Don Bosco College of Arts and Science,

Keela Eral

Department of mathematics

Syllabus-2021-2022 onwards

Sem	Part		Sub. Subject	Subject Title	Hrs/week	credits			Mark		
		No.	Status	·			Max	imum		Passi minir	
							Int.	Ext.	Tot.	Ext.	Tot.
III	Ι	13	Language	Tamil/Other Languages	6	4	25	75	100	30	40
	II	14	Language	English	6	4	25	75	100	30	40
	III	15	CoreIII Paper-V	SequencesandSeries	6	4	25	75	100	30	40
		16	Allied-II	Statistics-I OR Physics with Practical / Chemistrywith Practical /	6	3	25	75	100	30	40
				Computer Science	6	5	25	75	100	30	40
		17	Skill Based Core	Vector Calculus	4	4	25	75	100	30	40
	IV	18	Non- Major Elective	Anyoneofthefollo wing 1.1) Mathematics forCompetitiveExamina tions-I 1.2) Fundamentals of Statistics-I	2	2	25	75	100	30	40
		19	Common	Yoga*	2	2	25	75	100	30	40
		1	Total		30	25/27		1		1	
IV	Ι	20	Language	Tamil/Other Languages	6	4	25	75	100	30	40
	II	21	Language	English	6	4	25	75	100	30	40
	III	22	Core-IV Paper-VI	Abstract Algebra	6	4	25	75	100	30	40
		23	Allied-II	Statistics-II OR Physics with Practical / Chemistry with Practical/	6	3	25	75	100	30	40
		24	Skill	Computer Science Trigonometry, Laplace	6	5	25 25	75 75	100 100	30 30	40 40
			Based Core	Transforms and Fourier Series	4	4	23	75	100	50	40
	IV	25	Non- Major Elective	Anyone of the Following: 2.1) Mathematics for Competitive Examinations-II	2	2	25	75	100	30	40
		26	Common	2.2) Fundamentals of Statistics-II	2	2	25	75		30	40
		20	Common	Computers for Digital Era*			23	/3	100	50	40
	V		Extension activities	NCC/NSS/YRC/YWF/ PE	-	1	-	-	-	-	-
			Total	~	30	26/28		1	1.	1	.
V	III	27	Core-V	LinearAlgebra	5	4	25	75	100	30	40

1

Γ

		20	Paper-IX	Integral Transformer	7	4	25	75	100	20	40
		30	Core-VIII Paper-X	Integral Transforms and Z Transforms	5	4	25	75	100	30	40
	31 Major Elective-I Paper-XI			Anyone of the Following: 1.1) Programming in C 1.2) Discrete Mathematics 1.3) Combinatorial Mathematics	4	4	25	75	100	30	40
		32	Major Elective –II Paper-XII	Anyone of the Following: 2.1) Operations Research-I 2.2) Stochastic Process 2.3) Math Typing using LaTeX	4	4	25	75	100	30	40
	IV	33	Skill Based Common	Personality Development	2	2	25	75	100	30	40
			Total		30	26		•			
VI	III	34	Core-IX Paper-XIII	ComplexAnalysis	5	4	25	75	100	30	40
		35	Core-X Paper-XIV	GraphTheory	5	4	25	75	100	30	40
		36	Core-XI Paper-XV	NumberTheory	4	4	25	75	100	30	40
		37	Core-XII Paper-XVI	Dynamics	4	4	25	75	100	30	40
		38	Core-XIII Paper-XVII	NumericalMethods	4	4	25	75	100	30	40
		39	Major Elective-III Paper-XVIII	Any one of the following 3.1) Astronomy 3.2) Fuzzy Mathematics 3.3) Mathematical Modeling	4	4	25	75	100	30	40
		40	Major Elective-IV Paper-XIX	Any one of the following 4.1) Operations Research-II 4.2) Coding Theory 4.3) Programming in C++	4	4	25	75	100	30	40
				Total	30	28					

SEMESTER-III Non -Major Elective Paper I FUNDAMENTALS OF STATISTICS-I

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(1)		(C)
Part-III	Non		Fundamentals	30	-	-	2
	major-I		of Statistics-I				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: To introduce the new concept of Measure of Central Tendency to other major students .Also to study about correlation, regression and to solve simple problems.

Course Outcomes: On successful completion of the course, the students should be able to

	viccomes: On successful completion of the course, the	
CO	Course Outcome	Knowledge Level
No.		
CO1	Analyse the classification of datas. Also to	K3, K6
	construct bar diagram and Pie chart.	
CO2	Illustrate measure of central tendency and to	K1,K2
	find mean, median and mode.	
CO3	Explain the measure of dispersion .Also to	K4,K5
	find standard deviation, variance, quartile	
	deviation and to obtain the relationship	
	between them.	
CO4	Interpret correlation and to solve rank	K2,K6
	correlation problems.	
CO5	To find solution for regression equations	K1, K6
005	TO THIS SOLUTION TO TEGRESSION EQUATIONS	K 1, K 0

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	3	3	3	3	3
CO4	3	2	3	3	2
CO5	1	2	2	1	2
Total contribution of	13	12	14	13	11
COs to PSOs					
Weighted Percentage	86.67	80	93.33	86.67	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Classification of datas-BarDiagram-Pie chart.

UNIT-2:

Measuresofcentraltendency:Mean,median,mode(withfrequency).

UNIT-3:

Measuresofdispersion:Range-standarddeviation, Variance-Quartiledeviation.

UNIT-4:

Correlation-Rankcorrelation(Problemsonly)

UNIT-5:

Regressionequations(Problemsonly) **TextBook:**

Dr. S. Arumugam, A.ThangapandiIssac- Statistics, New Gamma Publishing House, Palayamkottai. (2016)

BooksforReference:

- S.P.Gupta-ElementaryStatisticalMethods,SultanChand&Sons,(2017).
- > T.Veerarajan, FundamentalsofmathematicalStatistics, YesDeePublishing Pvt, Ltd.. (2017)
- C.B.Gupta and Vijay Gupta, An Introduction to Statistical Methods, Vikas Publishing House Pvt.Ltd.New Delhi –(1973)

Semester -IV CORE -IV ABSTRACT ALGEBRA

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core		Abstract	90	-	-	4
			Algebra				

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
Π	IV	25	75	100

Objective: To acquire knowledge about the concept of groups,rings and fields and to study about the concept of homomorphism.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the definitions of groups and its	K2,K4
	examples. Also to determine the order of an	
	element.Illustrate about Subgroups.	
CO2	Interpret cyclic groups and to find the	K1,K3,K6
	generators of cyclic subgroups. Illustrate	
	and apply Lagrange'sTheorem,Euler's	
	Theorem and Fermat's Theorem.	
CO3	Elaborate about Normal Subgroups and	K4,K5
	group homomorphism.Illustrate	
	Isomorphism ,Automorphism .Also to	
	apply Cayley's theorem wherever required.	
CO4	Compare and classify Rings and its	K1,K6
	types.Illustrate about Integral domain and	
	Fields .To summarize about maximal and	
	minimal ideals.	
CO5	Utilize the concept of homomorphism and	K3,K5
	isomorphism on rings .Also to find kernel of	
	homomorphism and to make use of	
	fundamental theorem.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	2	1	3	1	2
CO5	2	2	2	1	2
Total contribution of	12	11	13	10	12
COs to PSOs					
Weighted Percentage	80	73.33	86.67	66.67	80
of COs contribution					
to PSOs					

UNIT-1:Groups – definition and examples-Elementary properties of groups – subgroup – order of an element– centre of a group –Normaliserand Centralizer – Product of two Subgroups – order of HK – Intersection and unionofsubgroups

UNIT-2 Cyclic groups–generators of a cyclic group–Cosets and Lagrange's theorem– Euler'stheorem–Fermat'stheorem.

UNIT-3:Normal Subgroups-Quotient groups – Group Homomorphism – Canonical homomorphism – Kernel of a homomorphism–Isomorphism–Automorphism–Inner automorphism–Permutation groups–Cayley's theorem.

UNIT-4:Rings:Definition and examples – Types of rings – Elementary properties of a ring – Integral domain – Field – Subrings – Subfields – Ideals – Principal ideal – Quotient ring – Maximal and prime ideals.

UNIT-5:Homomorphism of rings – Isomorphism – Kernel of a homomorphism – Fundamental theorem.

TextBook:

 S.Arumugam and A.ThangapandiIssac "Modern Algebra " - Scitech Publications, Privatelimited.(2008)

Books for Reference:

- M. L.Santiago, ModernAlgebra–McGraw-HillEducationIndiaPvt. Limited, (2002).
- T K. ManickaVachagampillai and others Modern Algebra VisvanathanPublishers(2011).
- VisvanathanNayak,Modern Algebra-EmeraldPublishers,Reprint1992.

SEMESTER -IV Skill Based Core-Paper- II TRIGONOMETRY,LAPLACE TRANSFORMS AND FOURIER SERIES

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-III	Skill		Trigonometry,	60	-	-	4
	Based		Laplace				
	Core		Transforms and				
			Fourier Series				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Π	IV	25	75	100

Objective: To understand the concept of Trigonometry and to acquire knowledge about Laplace Transform and its inverse. Also to study the concept of Fourier series and to solve problems by making use of it.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		-
CO1	Summarize about Trigonometry and to	K2,K3
	illustrate about the expansion of sinnx,	
	cosnx, Sin ⁿ x, Cos ⁿ x	
CO2	Obtain the relationship between hyperbolic	K1,K4
	functions and circular function. Explain	
	about inverse hyperbolic functions. To find	
	summation of the series using C+iS method.	
CO3	Illustrate laplace transform	K5
CO4		K6
	Solve differential equations with constant	
	coefficientsby making use of Laplace	
	Transforms.	
CO5	Solve problems based on Fourier series .	K3,K6
	Identify the odd and even functions and to	
	deduce half range series.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

co-rso mapping (course rationation method)							
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5		
Cos							
CO1	3	3	3	3	3		
CO2	2	2	3	3	3		
CO3	3	3	2	2	2		
CO4	3	2	3	1	2		
CO5	3	3	1	1	1		
Total contribution of	14	13	12	10	11		
COs to PSOs							
Weighted Percentage	93.33	86.67	80	66.67	73.33		
of COs contribution							
to PSOs							

UNIT-1:

Trigonometry: Expansion of sinnx, cosnx, tannx and expansions of sinⁿx and cosⁿx.

UNIT-2:

Hyperbolic functions – Relation between hyperbolic functions and circular functions – Inverse hyperbolic functions – Logarithm of a complex number–Summation of series using C+iS method

UNIT-3:

Laplace transforms.

UNIT-4:

Inverse transforms, Solving linear differential equations with constant coefficients using Laplace Transforms.

UNIT-5:

Fourier Series–Definition, Finding Fourier coefficients for a given periodic function with period 2π and 21,odd and even functions, Half range series.

TextBook:

- Arumugam. SandThangapandiIssac.A–TrigonometryandFourier Series.
- T.K. ManickavachagamPillaiandS. Narayanan –Differentialequationsanditsapplications, S. Viswanathan Publishers 2011.

Books for reference:

- > T.Veerarajan–Algebraand Trigonometry– YESDEEPublishing pvt.Ltd., Chennai. (2020).
- RayHanna.J–FourierSeries, TransformsandBoundaryvalueProblems, Dover PublicationsNewYork,2008.
- Dr.M.K.Venkataraman and Mrs.ManoramaSridhar, Vector Calculus and Fourier Series, The National Publishers Company, Chennai (2002).

SEMESTER -IV Non-Major Elective -II FUNDAMENTALS OF STATISTICS-II

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-IV	Non		Fundamentalsof	30	-	-	4
	Major		Statistics-II				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To know the concept of attributes and to study the index numbers and simple problems. **Course Outcomes**: On successful completion of the course, the students should be able to

	outcomes: on successful completion of the course, the students should be used							
CO	Course Outcome	Knowledge Level						
No.								
CO1	Explain the theory of Attributes	К3						
CO2	Illustrate about index numbers and to	K1,K5						
	determine the weighted index numbers.							
CO3	Analyse and predict consumer price index	K6						
	numbers							
CO4	Evaluate Time series	K4						
CO5		K2						
	Apply curve fitting for straight line ,parabola							
	and exponential curve							

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	1	2	3
CO5	2	3	1	3	3
Total contribution of	12	13	11	13	14
COs to PSOs					
Weighted Percentage	80	86.67	73.33	86.67	93.33
of COs contribution					
to PSOs					

Course Content:

UNIT-I

Theory of attributes-two attributes.

UNIT –II	
	Index number –weighted index number.
UNIT – III	
	Consumer Price index number –conversion of index number.
UNIT –IV	Time series – measurement of trends.
UNIT-V	Time series –measurement of trends.
	Curve fitting-Straight line -Parabola -Exponential curve.
TextBook:	

Dr. S. Arumugam, A. Thangapandi Issac- Statistics, New Gamma Publishing House, Palayamkottai (2016).

Books for Reference:

- S.P.Gupta-Elementary Statistical Methods, Sultan Chand & Sons, 2017).
- T. Veerarajan Fundamentals of mathematical Statistics, YesDee Publishing Pvt.Ltd.Edition .(2017)

Semester-V

Core-V LINEAR ALGEBRA

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Core-V		Linear Algebra	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about vectors spaces, Inner product space and linear transformations. Also to solve problems in Matrices

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain the definitions and general	K1, K2
	properties of vector spaces. Also to explain	
	subspace. They know where to apply	
	fundamental theorem of homomorphism.	
CO2	Determine the span of a set and to check	K4
	whether the given set is Linearly dependent	
	or not. Also to find basis and dimensions.	
CO3	Illustrate and apply Rank Nullity	K3,K6
	theorem.Explain the definitions and	
	examples of inner product space.Apply	
	Gram Schmidt Orthogonalization process.	
CO4	Construct matrices and also to summarize	K2, K6
	the elementary transformations.Determine	
	the Inverse of matrix and rank of a matrix.	
	To make use of Cayley Hamilton Theorem.	
CO5	Determine Eigen Values and Eigen Vectors.	K4,K5
	Identify bilinear forms and quadratic	
	forms.Also To deduce Diagonal form from	
	Quadratic form.	
1		

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	2	1	3	2	2
CO5	2	2	2	1	3

Total contribution of	12	11	13	12	11
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	86.67	0.8	73.33

UNIT-1:

Vectorspaces:Definitionandexamples-Elementaryproperties-subspaceslineartransformations-Fundamentaltheoremofhomomorphism.

UNIT-2:

Spanofaset-linear dependenceandindependence-basisanddimension.

UNIT-3:

Rank - Nullity theorem – Matrix of a linear transformation – Inner product space – Definitionandexamples–orthogonality –orthogonalcomplement–Gram Schmidtorthogonalizationprocess.

UNIT-4:

Matrices –Elementarytransformation–Inverse and power of a matrix using CayleyHamilton'stheorem–Inverse and rank of a matrix using elementary transformations.

UNIT-5:

Eigen values and Eigen vectors – Properties and problems – Bilinear forms – Quadratic forms –Reductionofquadraticformtodiagonalform. **TextBook:**

S.Arumugan&ThangapandiIssac ,Modern Algebra-Scitech Publication,Reprint(2008).

BooksforReference:

- SharmaJ.NandVashisthaA. R.LinearAlgebra-KrishnaPrakashNandir1981.
- ▶ JohnB. Fraleish–AfirstCourseinAbstractAlgebra 7thedition, Pearson, 2002.
- N. Ramabhadran&R.Balakrishnan, Textbookofalgebra VikasPublishingCo.RevisedEdition1985.
- Ward Cheney and David Kincaid, Linear Algebra-Theory and Applications. Jones and Barlett India PVT Ltd, New Delhi -First Edition(2010)

Semester-V

Core-VI REAL ANALYSIS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Real	75	-	-	4
	VI		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about the real number system and metric spaces. Also to study the concepts of connectedness and compactness.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain about Metric spaces and to	K1,K3
	construct an open ball .Also to interpret	
	interior	
CO2	Interpret about closed sets and to find	K2,K4
	closure. To determine limit points. Analyze	
	about complete metric space.Discuss about	
	Cantor's intersection theorem and Baire's	
	Category theorem.	
CO3	Summarize continuity. Illustrate about	K3,K5
	uniform continuity.	
CO4	Explain about connectedness and to deduce	K4,K6
	the connected subsets of R .To obtain the	
	relationship between connectedness and	
	continuity	
CO5	Illustrate about compactness and to find the	K3,K6
	connected subsets of R.Illustrate and make	
	use of Heine Borel Theorem .To determine	
	the relationship between compactness and	
	continuity.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	1	2	3	2	2
CO5	1	2	2	3	3
Total contribution of	10	12	13	14	11

COs to PSOs					
Weighted Percentage	66.67	80	86.67	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Metricspaces - Examples - boundedsets - openball-opensets - subspaces - interiorofaset.

UNIT-2:

Closedsets-closure-limitpoints-denseset-completemetricspace-Cantor's intersection theorem-Baire's category theorem.

UNIT-3:

Continuity-Homeomorphism-UniformContinuity

UNIT-4:

 $Connected ness-Connected subsets of {\bf R-} Connected ness and continuity-Contraction mapping theorem.$

UNIT-5:

Compactness–Compactmetricspaces–Compactsubsetsof**R**–HeineBoreltheorem–Equivalent characterizations forcompactness–Compactnessand Continuity.

TextBook:

Dr. S. Arumugan, ModernAnalysis–YesDeePublishingPvt.Ltd.Reprint(2019).

Books for Reference:

- RichardR.Goldberg–MethodsofRealAnalysis-OxfordandIBHPublishingCo.NewDelhi,Indian edition 1985.
- RVisvanathanNayak, RealAnalysis-EmeraldPublishers, Reprint1992.
- > Dr.B.S.Vatsa,Introductionto Real Analysis,CBS Publishers and Distributors,New Delhi.

Semester-V

Core-VII STATICS

				SIMIC	, D		
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Statics	75	-	-	4
	IX						

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To provide the basic knowledge of equilibrium of a particle and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the forces acting at a point and to	K2,K4
	apply the parallelogram law of forces,	
	Triangle law of forces and Lami's theorem.	
CO2	Interpret parallel forces and moments.	K1,K6
	Analyse the resultant of two parallel forces	
	and the resultant of two unlike unequal	
	parallel forces. To applyVarigon's theorem.	
CO3	Summarize equilibrium of three forces acting	K3,K5
	on a rigid body and to illustrate three	
	coplanar forces theorem and to make use of	
	the above theorem to solve problems	
CO4	Explain about laws of friction. Also to	K1,K2,K6
	determine the angle of friction and Illustrate	
	about the equilibrium of a particle and to	
	make use of the concepts to solve the	
	problems.	
CO5	Interpret the equilibrium of strings. To deduce	K2,K4
	the equation of catenary and its geometrical	
	properties.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-	PSO mapping (Co	ourse Articu	lation Met	<u>vietnoa)</u>	
/	DCO	DCO1	DCOA	DCOA	

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
C01	3	3	3	3	3

CO2	3	2	3	3	1
CO3	3	3	2	3	3
CO4	1	2	3	2	3
CO5	1	2	1	3	3
Total contribution of	11	12	12	14	13
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	93.33	86.67

UNIT-1:

Forcesactingatapoint-Parallelogramlawofforces-Triangle lawofforces-Lami'stheorem

UNIT-2:

Parallelforcesandmoments-resultantoftwoparallelforcesresultantoftwounlikeunequal parallel forces-Varigon'stheorem

UNIT-3:

Equilibrium of three forces acting on a rigid body-three coplanar forces theorem.

UNIT-4:

Friction-Lawsoffriction-angleoffriction-

equilibriumofaparticle(i)onaroughinclinedplane(ii)underaforceparalleltothe plane(iii)underany force

UNIT-5:

Equilibriumofstrings-equationofthecommoncatenary-tensionatanypoint-geometrical properties of commoncatenary

TextBook:

M.K. Venkatraman–Statics, Agasthiar Publications, Trichy(2020).

Booksforreference:

- S.Narayanan, StaticsS.ChandandCompany, NewDelhi (1985).
- K.ViswanathaNaikandM.Kari,Statics ,EmeraldPublishers,Chennai.
- > I.Rajeswari–Mechanics-SarasPublication,Nagercoil(2016).

Semester-V

Core-VIII INTEGRAL TRANSFORMS AND Z TRANSFORMS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Integral	75	-	-	4
	VIII		Transforms				
			and Z				
			transforms				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To develop the knowledge of transforms and to solve problems in Fourier transforms and Z transforms.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Apply Fourier transforms and to explain the properties.	K2,K4
CO2	Solve problems on infinite Fourier cosine and Sine Transforms	K1,K6
CO3	Identify and solve Finite Fourier transfoms	K3,K5
CO4	Illustrate Z transforms and its properties.	K1,K2,K6
CO5	Utilize inverse Z transforms to solve difference equations.	K2,K4

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	1	3	2	2	3
CO4	2	2	3	1	3
CO5	2	3	2	2	3
Total contribution of	11	13	13	12	13
COs to PSOs					
Weighted Percentage	73.33	86.67	86.67	80	86.67
of COs contribution					
to PSOs					

UNIT-1:

Fourier Transforms-Properties of Fourier Transforms.

UNIT-2:

Infinite Fourier Cosine and Sine Transforms-Properties.

UNIT-3:

Finite Fourier Transforms.

UNIT-4:

Z-transforms-Properties.

UNIT-5:

Inverse Transforms- Introduction to difference equations and find solution using inverse Z transforms

TextBook:

Singaravelu.A–Eingineering mathematics (volumeIII) –MeenakshiAgency,Chennai(2019).

Books for Reference:

- MuthuKumaraswamy.R- Transforms and Partial Differential Equation Equations–YesDee Publications –Second Edition(2019).
- Gangatharan, Engineering Mathematics (volume I) Prentice Hall of India Pvt. Ltd. (2007).
- Dr.C.Muthulakshmi@Saisikala and R.Ponraj- Transforms and their applications, Charulatha Publication(2020).

Semester-V Major Elective-I PROGRAMMING IN C

			1110 011		11.0		
Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Non		Programming	60	-	-	4
	Major -		in C				
	I						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To study the basic concepts and structure of C program and to train the students to write simple C programs.

Course Outcomes: On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Summarize about character set. Classify the	K3,K4
	keywords and identifiers.Identify the	
	constants, variables and data types.	
CO2		K1,K6
	Apply different types of operators and to	
	make use of input and output operators.	
CO3		K2,K5
	Compile programs by utilizing decision	
	making and branching statements. Also to	
	apply Decision making and looping	
	statements while develop a program.	
CO4	Make use of one dimensional and two	K3,K6
	dimensional arrays. Also to utilize Character	
	arrays and strings and its functions while	
	compiling the program	
CO5	Illustrate user defined functions and illustrate the	K2,K5
	definitions of functions and return values and their	
	types.Also to categorize function call, function	
	declaration.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
C01	3	2	2	2	3

CO2	2	3	3	3	2
CO3	2	3	2	2	3
CO4	2	2	3	3	3
CO5	2	2	2	3	3
Total contribution of	11	12	12	13	14
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	86.67	93.33

UNIT-1:

Introduction - Character set, C tokens ,keywords and identifiers, Constants ,Variables andDatatypes.

UNIT-2:

Operators – Arithmetic, relational, logical assignment, increment and decrement, Conditional,Bitwise special operators, Precedence of operators,Managing input and output operators – getchar(),putchar(),scanf()andprintf().

UNIT-3:

Decision making and branching-Simple if, if else, nested if and the else if ladder statements, The switch statement, The ?: operator, The goto statement. Decision making and looping-while, Dowhile and forstatement, jumpsinloops.

UNIT-4:

One dimensional and two dimensional arrays-declaration, initialization of arrays,

Multidimensional arrays, Character arrays and strings: Declaring and initializing string variables, Reading and writing of strings, string handling functions.

UNIT-5:

Userdefinedfunctions-

Definition of function, return values and their types, function calls, function declaration, Category of functions, Nestingo ffunctions, recursion.

TextBook:

 E. Balaguruswamy - Programming in ANSI C – Tata McGraw Hill Publishing company limited – III Edition(2017).

Booksforreferences:

- C. ReemaThareja, ProgramminginC-OxfordUniversityPress(2018).
- Ramasamyet.al.-Programmingin C-ScetechPublication(INDIA)Pvt.Ltd.IIEdition(2015).
- AshokN.Kamathane- ProgrammingwithAnsiandTurboC– DorlingKindersley(India)Pvt.Ltd,(2009).

Semester-V

Major Elective-I DISCRETE MATHEMATICS

	Disercite vintificities								
Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits		
	Туре	Code		(L)	(T)		(C)		
Part-III	Non		Discrete	60	-	-	4		
	Major -		Mathematics						
	Ī								

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To study concepts of mathematical logics and to understand the basics of Lattices and Boolean Algebra.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Illustrate and use the statements, notations and connectives .Construct truth table and utilize conditional and biconditional statements.	K2,K3
CO2	Analyze and explain Predicate calculus	K1,K4
CO3	Elaborate Groups and monoids. Also to develop Group codes	К6
CO4	ConstructLatticesandspeciallattices.Analyze and explain Boolean algebra	K5
CO5	Convert From one form to another form (Decimal,Binary,Octal,Hexadecimal). Evaluate Binary addition,subtraction multiplication and division.	K2,K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	3	1	3
CO2	3	3	3	3	2
CO3	3	3	2	1	3
CO4	2	3	3	3	3

CO5	1	3	2	3	2
Total contribution of	12	14	13	11	13
COs to PSOs					
Weighted Percentage	80	93.33	86.67	73.33	86.67
of COs contribution					
to PSOs					

UNIT-1: Mathematical logic – Statements and notation, Connectives, Negation, Conjunction, Disjunction, Statement formula and truth table ,Conditional and biconditionalstatements.Well defined formulae,tautologies. **UNIT-2**: Normal forms - The theory of interference for the statement calculus,ThePredicate,Theory of inference for the Predicate Calculus.

UNIT-3: Algebraic structures - Groups and monoids, Simple properties, Group codes.

UNIT-4: Lattices and Booleanalgebra -Lattices asposets, Properties of lattices, special lattices, Boolean algebra, Gating networks, Minimalsumsofproducts.

UNIT-5:Numbersystemand codes - Decimal,Binary,Octal,Hexadecimal-Conversionfromonetoanother-Binaryaddition,subtraction,multiplicationand division, BCD, Weightedexcess time, Graycode.

TextBook:

✤ J.P.Tremblayand Manohar-Discretemathematicalstructures with application to Computer Science(Tata McGrawHill)NewDelhi, 43rd edition 2013.

BooksforReference:

- M. K. Venkataramanandothers Discretemathematics- TheNationalPublishingPvt.Ltd. (2000).
- ➤ G. Balaji–Discretemathematics–BalajiPublishersChennai(2013).
- > T. Veerarajan–Discrete mathematics Tata McGraw Hill –2009.
- ➤ GarettBirkhoff-Lattice Theory,American Mathematical Soceity(1948).
- M.K.Sen,B.C.Chakraborty,Introduction to Discrete Mathematics, Books and Allied (P) Ltd (2009).

Semester-V Major Elective-I COMBINATIONAL MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Non		Combinational	60	-	-	4
	Major -		Mathematics				
	I						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To know the basic concepts of pairings and to understand relations

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain Selections and to find binomial coefficients.Classify ordered selections and unordered selections.	K1,K3
CO2	Solve pairing problems	К3
CO3	Explain recurrence and classify the types of relations using generating functions.	K2,K5
CO4	Illustrate The inclusion and exclusion principles.	K4,K6
CO5	Construct and solve block designsand square block designs.	K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	3	1	3
CO2	2	1	2	3	1
CO3	2	2	2	1	2
CO4	2	1	1	3	1
CO5	1	3	2	3	1

Total contribution of COs to PSOs	10	9	10	11	8
Weighted Percentage of COs contribution to PSOs	66.67	60	66.67	73.33	53.33

UNIT-1:

Selections and Binomial coefficients–Permutations–Ordered selections–unordered selections–Miscellaneous Problems.

UNIT-2:

Parings Problems–Pairings within a set–Pairing between sets.

UNIT-3:

Recurrence–Fibonacci–type relations using generating functions–Miscellaneous methods.

UNIT-4:

The Inclusion-Exclusion Principles.

UNIT-5:

Block designs-square block designs.

TextBook:

✤ IanC.Andersen–A first course in combinatorial mathematics –Clarendon Press,Oxford(1989).

Books for Reference:

RalphP.Grimaldi,B.V.Ramona –Discreteandcombinatorialmathematics– anappliedintroduction(IVedition).

Semester-V Major Elective-I OPERATIONS RESEARCH -I

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Operations	60	-	-	4
	elective		Research-I				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To introduce the various techniques of operations research

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Solve Linear Programming Problem by making use of Graphical method, Simplex method.	K4
CO2	Interpret the concept of duality.Classify primal and dual problems.Utilizing the concept of duality ,solve problems on dual simplex method.	К3
CO3	Solve Transportation problems by making use of North – west corner rule,Matrix- Minima method,Vogel's Approximation rule. Evaluate Degeneracy and unbalanced transportation problems.	K2,K5
CO4	Determine the solution for Assignment problems.	K1,K6
CO5	Solve sequencing problems.	K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

			/			-
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5	
					Pag	e 55

Cos					
CO1	3	3	3	1	3
CO2	2	1	2	3	3
CO3	2	1	2	3	2
CO4	2	3	1	3	3
CO5	3	3	2	3	3
Total contribution of	12	11	10	13	14
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	66.67	86.67	93.33

UNIT-1:

Linear Programming Problem:Mathematical formulation of LPP–Graphical method,Simplex method–Artificial variable technique.

UNIT-2:

Concept of Duality-Primal and Dual problems-Duality-Dual Simplex method.

UNIT-3:

Transportation Problem:North-west Corner rule–Matrix-Minima method–Vogel's approximation method–MODI method–Degeneracy and unbalanced Transportation problem.

UNIT-4:

Assignment Problem: Hungarian method – Unbalanced assignment problems.

UNIT-5:

Sequencing Problem: n jobs and two machines – n jobs and three machines – 2 jobs and m machines.

TextBook:

 KantiSwarup, P. K. Gupta and Manmohan – Operations Research – Sultan Chand and sons,(New Delhi)12thedition(2006)

BooksforReference:

- ➤ GuptaP.KandD.S.Hira–OperationsResearch–S.Chand&Sons Reprint (2012).
- B. J.RanganathandA. S.Srikantappa–OperationsResearch– YesDeePublishingHouse,Chennai(2017).
- HamdyA.Taha Operationsresearch, Anintroduction-8thEditionPrentice–HallIndia(2006).
- ▶ A.C.S.Kumar, Operation Research, Yes Dee Publications, Chennai, 3rd Reprint 2019.

Semester-V Major Elective-I STOCHASTIC PROCESS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Stochastic	60	-	-	4
	Elective		Process				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To understand the concepts of stochastic process and understand the generalization of Poisson process

Course Outcomes: On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Determine the generating functions .Also to	K1,K3
	analyze and explain Stochastic Process and specification of stochastic process	
CO2	Interpret Markov Chains .Also to analyze	K2,K4
	the classification of states and	
	chains.Illustrate the stability of Markov	
	chain.	
CO3		K2,K5
	Classify Markov chain with denumberable	
	states and Markov chain with continuous	
	state space.	
CO4		K1,K6
	Illustrate Markov Process with discrete state	
	space by using Poisson Process.	
CO5	Elaborate Erlang Process.	K5
		1 + U(O)

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos CO1	3	3	3	1	3
CO2	2	1	2	3	3

CO3	1	1	2	3	2
CO4	2	3	1	3	3
CO5	3	3	2	3	2
Total contribution of	11	11	10	13	13
COs to PSOs					
Weighted Percentage	73.33	73.33	66.67	86.67	86.67
of COs contribution					
to PSOs					

UNIT-1:

Generating functions-Laplace transform of probability distribution, Classification of distribution, Stochastic process, specification of stochastic process.

UNIT-2:

Markov chains – Definition and examples, Higher transition probabilities, Generalisation of independent Bernoulli Trails, classification of states and chains, Determination of Higher Transition Probabilities–stability of Markov systems.

UNIT-3:

Markov chain with Denumerable number states – Reducible chains ,Statistical inference for Markov chains, Markov chain with continuous state space, Non homogeneous chains.

UNIT-4:

Markov process with discrete state space–Poisson process, Poisson process and related distributions, Generalisation of Poisson process, Birth and Death process.

UNIT-5:

Markov process with Discrete state space–Derived Markov chains, Erlang Process.

TextBook:

 J.Medhi–Stochastic Process–New Age International Publishers Pvt.Ltd.Third Edition. 2009.

Books for Reference:

- SuddhenduBiswas Applied Stochastic Process New Central Agency Pvt. Ltd.,Kolkatta(2012).
- PaulG.Hoel,SidneyPort&CharlesJ.Stone–IntroductiontoStochasticprocess–WavelandPress– Boston(1987).
- V.Thangaraj, Stochastic Process and their applications, New Age International Publishers, NewDelhi, First Edition (1995).

Semester-VI Major Elective- IV MATH TYPE USING LATEX

				III BOOL			
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-IV	Major		Math	60	-	-	4
	Elective		Туре				
			using				
			Latex				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Type words, sentences and symbols not in the	K1,K3
	keyboard usingTex	
CO2	Analyze Text environments	K2,K4,K5
CO3	Type math by making use of spacing rules, equations	K5
CO4	Type spacing of symbols building new symbols, math alphabets and symbols	K2,K6
CO5	Write latex documents by making use of	K4
	abstract, sectioning, cross referencing and	
	Bibliographies.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	1	3	3	3	3
CO2	2	1	3	2	1

CO3	2	1	2	3	2
CO4	3	2	3	3	1
CO5	3	3	3	3	3
Total contribution of	11	10	14	14	10
COs to PSOs					
Weighted Percentage	73.33	66.67	93.33	93.33	66.67
of COs contribution					
to PSOs					

Unit-I

Typing text: Words, sentences and paragraphs-symbols not on the keyboard-comments and footnotes-Changing font Characteristics-Lines, paragraphs and pages-spaces- Boxes.

(Chapter 5, section 5.1 to 5.9, pages 61 to 115)

Unit-II

Text environments: some general rules for displayed text environments-List of environmentsstyle and size environments-proclamations(theorem-like structures)-Proof environments-Tabular environments-Tabbing environments-Miscellaneous displayed text environments.

(Chapter 6, section 6.1 to 6.8, pages 117 to 149)

Unit-III

Typing math:Mathenviroments-spacing rules-equations--spacing rules-equations-Basic constructs-Arithmetic operations-Delimiters-Operators-Math accents-Stretchable horizontal lines-formula gallery.

(Chapter 7, section 7.1 to 7.9, pages 151 to 186)

Unit-IV

More math: Spacing of symbols building new symbols-math alphabets and symbols-vertical spacing-Tagging and grouping-Generalized fractions-Boxed formulas.

(Chapter 8, section 8.1 to 8.6, pages 187 to 206)

Unit-V

Latex documents: The structure of a document-The preamble-Abstract-Sectioning-Cross referencing-Bibliographies.

(Chapter 10, section 10.1 to 10.6, pages 245 to 270)

Text Book:

✤ George Gratzer, More Math into LaTeX,4th edition, Springer, 2007.

Books for Reference:

- ▶ Helmut KopkaandPatricW.Daly,A guide to LaTeX,Fourthedition,Addison-Wesley.
- > David R.Wilkins, Getting started with LaTeX, SecondEdition.

Practical:

Typing texts and Tables: Chapter 4.1- Inserting Figures Chapter 5.1-Mathematical Equations: Chapter 6.3-Inserting references: Chapter 7.6-Preparing an article for mathematical journal.

Work Book: iSkills, LaTeX for Beginners workbook 5thedition, March 2014.

Semester-VI

Core-IX

COMPLEX ANALYSIS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Complex	75	-	-	4
	IX		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To understand the concepts of complex variables and to learn about elementary transformations in complex variables.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		6
CO1	Explain analytic functions and determine the	K2, K3
	functions of a complex variables and to	
	utilize Cauchy Reimann equations	
CO2	Elaborate Bilinear Transformations and	K4,K5
	classify the elementary transformations.	
	Also to find fixed points.	
CO3	Illustrate complex integrations and to make	K1,K6
	use of Cauchy's Integral Formula	
CO4	Explain Series Expansions and to determine	K2, K6
	Taylor's Series, Laurent's Series. Determine	
	zeros of an analytic function.	
CO5	Determine residues and to make use of	K4,K5
	Cauchy's Residue Theorem. Also to evaluate	
	definite integrals	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					

C01	3	3	3	3	3
CO2	2	2	2	3	1
CO3	3	3	3	3	2
CO4	1	2	2	2	2
CO5	1	2	1	1	3
Total contribution of	10	12	11	12	11
COs to PSOs					
Weighted Percentage	66.67	80	73.33	80	73.33
of COs contribution					
to PSOs					

UNIT-1: Analytic functions - Functions of a complex variable, Limits, theorems on limit, continuous function, Differentiability, The Cauchy-Riemann equations, Analytic functions, Harmonic functions.

UNIT–2:Bilinear Transformations – Elementary Transformations, Cross Ratio, Fixed Points of Bilinear Transformations, Some Special Bilinear Transformations.

UNIT–3:Complex Integration – Definite Integral, Cauchy's Theorem, Cauchy's Integral Formula, Higher Derivatives.

UNIT-4: Series Expansions – Taylor's Series, Laurent's Series, Zeros of an Analytic Function, Singularities.

UNIT-5: Calculus of Residues– Residues, Cauchy's Residue Theorem, Evaluation of Definite Integrals.

TextBook:

Arumugam.SandT.Issac-"ComplexAnalysis"-ScitechPublishingHouse-Chennai, (2002).

Books for Reference:

- Churchill.R.V.andJ.W.Brown-"Complexvariables and Applications"-McGrawHillInternationalEditions-IXEdition,2013.
- Ponnuswamy.S "Foundations of Complex Analysis", Narosa Publication House, NewDelhi, IIEdition2005.
- Duraipandian.P andLakshmiDuraipandian-"ComplexAnalysis"-EmeraldPublications, Chennai(2001).

Semester-VI

Core-X GRAPH THEORY

			0				
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-X		Graph	75	0	-	4
			Theory				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce the notion of graph theory and its applications and to learn the techniques in Graph Theory.

Course Outcomes: On successful completion of the course, the students should be able to

No.CO1Construct graph and to explain its definition. Determine degrees. Also to perform operations on graphK2,K3CO2Classify degree sequence and graphic sequence. Illustrate connectedness, compactness and connectivity.K4,K5CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determine operation graphs and to determineK2, K6	CO	Course Outcome	Knowledge Level
Determinedegrees.Alsotoperformoperations on graphOperations on graphCO2Classify degree sequence and graphicK4,K5sequence.Illustrate connectedness, compactness and connectivity.CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determineK2, K6	No.		
operations on graphCO2Classify degree sequence and graphic sequence. Illustrate connectedness, compactness and connectivity.K4,K5CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determineK2, K6	CO1	Construct graph and to explain its definition.	K2,K3
CO2Classify degree sequence and graphic sequence. Illustrate connectedness, compactness and connectivity.K4,K5CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determineK2, K6		Determine degrees. Also to perform	
sequence. Illustrate connectedness, compactness and connectivity.K1,K6CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determineK2, K6		operations on graph	
CO3 Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree. K1,K6 CO4 Interpret Planar graphs and to determine K2, K6	CO2	Classify degree sequence and graphic	K4,K5
CO3Construct Eulerian Graphs and Hamiltonian graphs.Elaborate the characterizations of trees and to find centre of a tree.K1,K6CO4Interpret Planar graphs and to determineK2, K6		sequence. Illustrate connectedness,	
graphs.Elaborate the characterizations of trees and to find centre of a tree.K2, K6CO4Interpret Planar graphs and to determine		compactness and connectivity.	
trees and to find centre of a tree.CO4Interpret Planar graphs and to determineK2, K6	CO3	Construct Eulerian Graphs and Hamiltonian	K1,K6
CO4 Interpret Planar graphs and to determine K2, K6		graphs.Elaborate the characterizations of	
		trees and to find centre of a tree.	
abromatic much and abromatic index	CO4	Interpret Planar graphs and to determine	K2, K6
chromatic numbers and chromatic index.		chromatic numbers and chromatic index.	
CO5 Explain Chromatic Polynomials and the K4	CO5	Explain Chromatic Polynomials and the	K4
properties of digraphs.		properties of digraphs.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
Cos					

C01	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2
CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
Cos to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Definitionand examples of graphs – degrees- subgraphs – isomorphism – independent sets and covering s – matrices – operations of graphs.

UNIT-2:

Degreesequences-graphicsequences-walks-trailsandpaths -connectednessandcomponents-connectivity.

UNIT-3:

Euleriangraphs-Hamiltoniangraphs, Trees and its characterization-centreofatree.

UNIT-4:

Planargraphs-Definitionandproperties-chromaticnumberandchromaticindex.

UNIT-5:

Chromaticpolynomials, definitionandbasicpropertiesofdigraphs, pathsandconnectedness indigraphs.

TextBook:

 Arumugam.S&S.Ramachandran–InvitationtoGraphTheory, Scitech Publications,Chennai,2002.

Booksforreference:

- Kumaravelu.SandSusheelaKumaravelu –Graphtheory-Nagercoil,2002.
- NarasinghDeo–Graphtheorywithapplicationtoengineeringandcomputer science, Prentice– HallofIndiapvt.Ltd.,NewDelhi,1979.

Semester-VI

Core-XI NUMBER THEORY

			110		цощ		
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Number	60	-	-	4
	XI		Theory				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To highlight the beauties in the world of numbers and to prepare the students for coding through congruence.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		0
CO1	Explain Peano's theorem and to utilize	K1,K5
	mathematical induction.Also to make use of	
	binomial theorem	
CO2	Illustrate Division Algorithm .Determine GCD .To	K3,K5
	deduce the Diaphantine equation ax+by=c	
CO3	Intrepret the fundamental theorem of	K2,K6
	arithmetic.Explain The Sieve of Eratosthenes and to	
	use Goldbach Conjecture.	
CO4	Summarize the basic properties of congruences and	K2, K4
	to apply Chinese Remainder Theorem	
CO5	Elaborate Fermat's Theorem, Wilson's Theorem	K6
	and to apply Kraitchik Factorization Method.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2

CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
COs to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Peano'sAxioms-Mathematicalinduction-TheBinomialTheorem-EarlyNumber Theory.

UNIT-2:

DivisionAlgorithm-GCD-EuclideanAlgorithm-TheDiaphantineEquationax+by=c.

UNIT-3:

 $The fundamental Theorem of Arithmetic-The Sieve \ of Eratos thenes-The Goldbach conjecture.$

UNIT-4:

Basic properties of congruences-Linear congruence and The Chinese Remainder Theorem.

UNIT-5:

Fermat's Theorem-Wilson's Theorem-The Fermat-Kraitchik Factorization Method.

TextBook:

David.M.Burton –ElementaryNumberTheory-Tata McGraw Hill Education Pvt. Ltd-(SixthEdition)-2007.

BooksforReference:

IvanNivenand.H,Zuckerman-AnIntroductionto CambridgeUniversityPress-2019. TheoryofNumbers,

Kumaravelu.S, TheoryNagercoil,2002.
andSusheelaKumaravelu-ElementsofNumber

Semester-VI

Core-XII

				DYNAMI	CS .		
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Dynamics	60	-	-	4
	XII						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To provide a basic knowledge of the behaviour of objects in motion and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

	Course Outcome	Knowledge Level
No.		C
CO1	Illustrate projectiles and to find the equation of	K2,K3
	path, range and maximum height and time of flight.	
CO2	Elaborate about the collision of elastic	K1,K4
	bodies.Interpret law of impact and classify direct	
	and oblique impact.	
CO3	Determine simple harmonic motion in a straight	K2,K6
	line.Summarize the composition of SHM of the	
	same period in the same line and along two	
	perpendicular directions.	
CO4	Interpret motion under the action of central	K5,K6
	forces.Derive velocity and acceleration in polar	
	coordinates.	
CO5	Obtain the differential equation of central orbit	K3,K6
	Also to deduce the pedal equation of central orbit.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
Cos					

C01	3	3	3	3	3
CO2	2	2	3	3	2
CO3	3	3	2	3	2
CO4	2	2	3	1	2
CO5	2	2	2	1	3
Total contribution of	12	12	13	11	12
COs to PSOs					
Weighted Percentage	80	80	93.33	73.33	80
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Projectiles-Equation of path-range-maximum height-time offlight.

UNIT-2:

Collision of elastic bodies-Laws of impact-direct and oblique impact.

UINT-3:

Simple Harmonic Motion (SHM) in a straight line-Geometrical representation–composition of SHM of the same period in the same line and along two perpendicular directions.

UNIT-4:

Motion under the action of central forces-velocity and acceleration in polar co-ordinates.

UNIT-5:

Differential Equation of central orbit-pedal equation of central orbit-problems to find the law of force towards the pole when the orbit is given.

TextBook:

♦ Venkatraman, M.K.-A TextBook on Dynamics, Agasthiar Publication, Trichy, 2020.

Books for Reference:

- ▶ Narayanan, S-Dynamics, S.Chand& company(New Delhi), 16thEdition, 1986.
- Duraipandian.P, LaxmiDuraipandian and MuthamizhJayapragasam-Mechanics S.Chand& Company (2003).
- ▶ I.Rajeswari–Dynamics Saras Publication, Nagercoil, I edition (2019).

Semester-VI Core-XIII NUMERICAL METHODS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Complex	75	-	-	4
	XIII		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce finite differences and to solve numerical problems by different methods. **Course Outcomes**: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		5
CO1	Obtain solution for numerical algebraic and	K1,K3,K4
	Transcendental equations by making use of various methods.	
CO2	Find finite difference for first and higher	K2,K6
	order differences. To classify forward and	
	backward differences.	
CO3	To apply interpolation formula in Newton's	K5,K6
	Forward and backward, Guass Forward and	
	backward formula.	
CO4	Make use of numerical differentiation and	K3,K4
	integration in Newton's forward &backward	
	differences for differentiation. Also to utilize	
	Trapezoidal rule and Simpson's 1/3 and 3/8	
	rule.	
CO5	Solve Difference equations and to determine	K1,K6
	the order and degree of difference	
	equation.Solve linear difference equation and	

	find complementary function and to deduce	
	particular Integral of the function.	
IZ1 D		

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	3	3
CO2	2	2	3	3	1
CO3	2	3	2	3	2
CO4	2	2	2	3	2
CO5	1	2	2	2	3
Total contribution of	9	12	12	14	11
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	93.33	73.33

CO-PSO mapping (Course Articulation Method)

Course Content

UNIT-1:

Solution of Numerical algebraic and Transcendental Equations : Bisection method-Newton'smethod. Criterion of order of convergence of Newton's method.Regula False method – Gausselimination–Gauss Jacobi–GaussSeidalmethod.

UNIT-2:

Finite Difference: First and higher order differences – Forward and backward differences – PropertiesofOperator –Differencesofa polynomial–FactorialPolynomial.

UNIT-3:

Interpolation: Newton's Forward–backward, Gauss forward–backward interpolation formula–Bessel's formula. Divided differences – Newton's divided differenceformula – Lagrange's interpolation formula.

UNIT -4:

Numerical Differentiation and integration : Newton's forward and backward differences for differentiation- Derivatives using Bessel's formula-Trapezoidal rule-Simpson's 1/3 rule & 3/8 rule.

UNIT-5:

Difference equations: Definitions-order and degree of difference equation-Linear difference equation-finding complementary function-particular integral-simple applications.

TextBook:

 Venkatraman.M.K-NumericalmethodsinScienceandEngineeringNationalPublishingCompany-Edition1998.

BooksforReference:

- Kandasamy.P.K.Thilagavathy and K.Gunavathy, Numerical Methods, S.Chand& CompanyLtd.Edn.2006.
- AutarKawandEgwwnEncKalu– NumericalmethodswithApplicationAbidet.Autokaw.com2ndEdtion,2011.
- Dr.A.Singaravelu ,Statistics&NumericalMethods,MeenakshiAgency(2012).

Major Elective- III ASTRONOMY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Astronomy	60	-	-	4
	Elective-						
	III						

Contact hours per semester: 60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce the exciting world of Astronomy to students and to understand the movements of the celestial sphere.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain Spherical Trigonometry .Also to elaborate the fundamental of spherical trigonometry,thesine,the cosine, four parts and Napier's formula.	K3,K5
CO2	Imagine the celestial sphere,Illustrate about the rising and setting of a star. Identify and Classify circumpolar stars and morning, evening stars.	K1,K4
CO3	Imagine Earth and to explain refraction. Deduce Tangent formula and Cassini's formula.	K2,K6
CO4	Illustrate Geocentric parallax and Heliocentric parallax	K3,K5
CO5	Elaborate Kepler's laws. Also to classify True anomaly,mean anomaly and eccentric anomaly and to obtain the relationship between them.	K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	1
CO3	2	3	2	3	2
CO4	2	2	2	3	2
CO5	2	1	2	2	3
Total contribution of	10	11	12	14	11
COs to PSOs					
Weighted Percentage	66.67	73.33	80	93.33	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

SphericalTrigonometry:Sphericaltriangle–ThefundamentalformulaofSphericaltrigonometry, the sine, cosine, four parts and Napier formula (without proof) and simpleproblems.

UNIT-2:

TheCelestialSphere: Celestial co-ordinates–Diurnalmotion–Risingandsettingofastar siderealtime –circumpolarstars–Morningandeveningstars-Twilight.

UNIT-3:

Earth – length of a day – Refraction – Tangent formula – Cassini's formula – Effects of refraction.

UNIT-4:

Geocentricparallax-Effects-Heliocentricparallax-Effects.

UNIT-5:

Kepler's laws -verification of Kepler's laws - True anomaly, mean anomaly, Eccentricanomaly-Relationbetween them.

TextBook:

 Kumaravelu.SandSusheelaKumaravelu –Astronomy for degree classes, RainbowPrinters,Nagercoil(2005).

BookforReference:

Ramachandran.G.V–Astronomy,MissionPress,Palayamkottai,1965.

Major Elective- III FUZZY MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Major		Fuzzy	60	-	-	4
	Elective		Mathematics				
	-III						

Contact hours per semester:60

Contact hours per week :4									
Year	Semester	Internal	External	Total marks					
		Marks	Marks						
III	VI	25	75	100					

Objective: Tointroduce fuzzyconceptstostudents and

tofacilitatethestudentstostudyfuzzyoperationsandfuzzynumbers

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain Crisp sets and fuzzy sets and illustrate the	K1,K2
	characteristics and significance of Paradigm Shift.	
CO2	Elaborate the Additional properties of α cuts and	K1,K4
	the extension principle for fuzzy sets.	
CO3	Perform fuzzy set operations. Also to determine	K5,K6
	fuzzy complements, fuzzy intersections and fuzzy	
	unions.	
CO4	Determine fuzzy numbers and Linguistic	K2,K3,K4
	variables. Apply arithmetic operations on intervals	
	and on fuzzy numbers.Construct lattice of fuzzy	
	numbers.	
CO5	Analyze and classify fuzzy decision making	K5,K6
	,individual decision making, Multi person decision	
	making problems.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	1	3	3	1
CO3	2	1	2	3	2
CO4	1	2	2	3	2
CO5	2	2	1	2	3
Total contribution of	9	9	11	14	11
COs to PSOs					
Weighted Percentage	60	60	73.33	93.33	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

CrispSets-FuzzySets-BasicTypes-BasicConcepts-Characteristics and SignificanceofParadigmShift.

UNIT-2:

Additional properties of α -cuts- representations of fuzzy sets- Extension principle for fuzzy sets.

UNIT-3:

Fuzzysetoperations–Fuzzycomplements–Fuzzyintersections:t-norms–FuzzyUnions:t-conforms –Combinations of operations.

UNIT-4:

Fuzzy numbers – linguistic variables-arithmetic operations on intervals-arithmetic operations on fuzzy numbers-Lattice of fuzzy numbers-Fuzzy Equations.

UNIT-5:

Fuzzy decision making - Individual Decision Making-Multi-person decision making-fuzzy linear programming.

TextBook:

GeorgeJ.KlirandBoBoYuan–
 FuzzysetsandFuzzyLogicTheoryApplications,PrenticeHallofIndia,2002,NewDelhi.

Book forReference:

GeorgeJ.KlirandTina.A.Folger–Fuzzy sets, uncertainty and Information – Prentice Hall ofIndia,2003,NewDelhi.

Semester-VI Major Elective- III MATHEMATICAL MODELLING

					DEBERYO		
Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Major		Mathematical	60	-	-	4
	Elective		Modelling				
	-III						

Contact hours per semester:60

Contact hours per week:4

	1			
Year	Semester	Internal	External	Total marks
		Marks	Marks	
Ш	VI	25	75	100

Objective: To study the mathematical models through ODE and difference equations. **Course Outcomes**: On successful completion of the course the students should be able to

CO	Course Outcome	Knowledge Level
No.		0
CO1	Illustrate mathematical modelling through ODE.	K1,k2
	Classify and elaborate linear growth, non-linear	
	and growth decay	
	problems,Compartmentmodels,Dynamic problems	
	and geometrical problems.	
CO2	Explain population dynamics, Epidemics.Anlayze	K2,K3,K5
	the compartment models in	
	economics, medicines, arms race bullets and	
	international trade.	
CO3	Explain mathematical modelling problem through	K5,K6
	second order ODE.	
CO4	Illustrate mathematical modelling through	K2,K6
	difference equation.	
CO5	Explain mathematical modelling through graphs.	K3,K6
IZ1 D		$1 + \mathbf{V}(\mathbf{O})$

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	3	3
CO2	2	1	3	3	1
CO3	2	1	2	3	2
CO4	2	2	2	3	1
CO5	2	2	1	1	3
Total contribution of	10	9	11	13	10
COs to PSOs					
Weighted Percentage	66.67	60	73.33	86.67	66.67
of COs contribution					
to PSOs					

Course Content

UNIT-1:

(Mathematical modeling through O.D.E(First order)): Linear growth and Decay models – Non – linear growth and Decay models – Compartment Models – Dynamics Problems–GeometricalProblems. Page | 76

UNIT-2:

Population dynamics – Epidemics – Compartment Models – Economics, Medicine, Arms race, BattlesandInternationalTrade.

UNIT-3:

(MathematicalModellingthroughO.D.E.(Secondorder)): Planetarymotion-circularmotion-Motionofsatellites- Modelling throughlineardifferenceequationsofsecond order.

UNIT-4:

(MathematicalModellingthroughdifference equations):Basictheoryofdifferenceequation with constant coefficients – Economics and Finance –Populationdynamicsandgenetics–Probabilitytheory.

UNIT–5:(Modellingthroughgraphs):Solutionsthatcanbemodeledthroughgraphsmodelsintermsofdirectedgraphs,signed graphs, weighted digraphs and unoriented graphs.

TextBook:

 Kapur.J.N – Treatment as in "Mathematical Modelling" New Age InternationalPublishers,2004.

BooksforReference:

- ➤ Kapur.J.N–MathematicalModellinginBiologyandMedicine–EastWestPress–1985.
- Singh–MathematicalModelling,InternationalBookhouse–2003.
- Frank R.Giordano, MauriceD.WeirandWilliamP.Fox,-Afirstcourseinmathematicalmodelling, ThomsonLearning, LondonandNewYork, 2003.
- ≻ Kapur.J.N, Mathematic modeling, New Age International Pvt., Ltd., Reprint (2007).

Semester-VI Major Elective- IV OPERATIONS RESEARCH-II

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Operations	60	-	-	4
	Elective		Research				
	-III						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce games and strategies. Also to understand networking problems. **Course Outcomes**: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Interpret the games and strategies. Solve two persons zero sum games.Make use of mixed strategies and dominance property.	K2,K3
CO2	Analyze the replacement of items that deteriorate with time. Illustrate replace montage of a machine taking money value into consideration and elaborate the replacement of items that completely fail suddenly and Staffing problems.	K1,K5
CO3	Explain the queueing models and to classify into (M/M/1:FCFS),(M/M/1:∞/FCFS),(M/M/S:/FCFS)	K4,K6
CO4	Compose network scheduling using PERT/CPM. Explain the rules of network construction.Make use of PERT calculation.	K2,K3
CO5	Analyse and solve inventory control problems.	K5,K6

➤ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	2	3
CO2	2	1	3	2	1
CO3	2	1	2	2	2
CO4	2	2	2	2	1
CO5	1	2	1	1	3
Total contribution of	9	9	11	9	10
COs to PSOs					
Weighted Percentage	60	60	73.33	60	66.67
of COs contribution					
to PSOs					

UNIT-1:	
	Games and Strategies: Two Person Zero sum Games – The Maximin – Minimax Principle –Games without Saddle Points – Mixed Strategies – Graphical Solution of 2xn and mx2 games–DominanceProperty.
UNIT-2:	
	Replacement of items that deteriorate with time – replace montage of a machine taking moneyvalue into consideration – replacement of items that completely fail suddenly and StaffingProblems.
UNIT-3:	
	Queueingmodels:Generalconceptanddefinitions-characteristics-properties of PoissonprocessModels(M/M/1:/FCFS),(M/M/1:∞/FCFS),(M/M/S:/FCFS).
UNIT-4:	
	Networks SchedulingbyPERT/CPM:Networkandbasiccomponents-
	RulesofNetworkConstruction– TimeCalculation in network–CriticalPathMethod– PERTCalculation.
UNIT-V:	
	Inventory Control :Introduction–Typesof Inventories–Inventory decisions– DeterministicinventoryProblem–EOQproblems withoutshortages.
TextBook:	
✤ KantiSwa 12 th Editio	rup,P.K.GuptaandManmohan–OperationsResearch–SultanChand&Sons– 2006, n.
Books for Referen	ice:
➢ Gupta.P.K	KandD.S.Hira–OperationsResearch–S.Chand&sons–VIIEdition

- B.J.RanganathandA.S.Srikantappa–OperationsResearch, YesDeePublishingHouse, Chennai (2017).
- Hillier, F.S. and G.J. Lieberman–Introduction to Operations Research, 9th Ed., TataMcGrawHill, Singapore, 2009.
- HamdyA.Taha,-OperationsResearch,AnIntroduction,8thEd.,Prentice–HallIndia,2006.
- Hadley.G.-LinearProgramming,NarosaPublishingHouse,NewDelhi,2002.

Semester-VI Major Elective- IV CODING THEORY

					20111		
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Coding	60	-	-	4
	Elective		Theory				
	-IV		-				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Analyze and illustrate basic assumptions and correcting ,detecting error patterns. Also to interpret effects of error correction and detection.	K3,K4
CO2	Elaborate linear codes and illustrate the bases for C and C^+ generating matrices on coding	K1,K2
CO3	Illustrate parity check matrices and determine the equivalent codes	K3,K5
CO4	Explain some bounds for codes and classify perfect codes,hamming codes, extended codes, the extended Golay code and decode them.	K4,K6
CO5	Summarize about polynomials and words,cycliccodes.Make use of polynomial encoding and decoding	K6

≻ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	1	3	3	2	3
CO2	2	1	3	2	1
CO3	2	1	2	2	2
CO4	2	2	3	2	1
CO5	3	2	3	2	3
Total contribution of	10	9	14	10	10
COs to PSOs					
Weighted Percentage	66.67	60	93.33	66.67	66.67
of COs contribution					
to PSOs					

Course Content:

UNIT -1:

Introduction to coding theory, Basicassumptions, Correctinganddetectingerrorpatterns-informationrate-effects of error correction and detection -finding the most likely code word transmitted.

UNIT-2:

Linear codes–subspaces independence–basis, dimension–matrices–Bases for Cand C⁺generating matrices on coding.

UNIT-3:

Parity check matrices- equivalent codes-distance of a linear code-Linear codes - cosets - MLDforlinear codes-ReliabilityofIMLDforlinearcodes.

UNIT-4:

Some bounds for codes-perfect codes-hamming codes-extended Codes-The extended Golay code-decoding the extended Golay code-Golay code.

UNIT-5:

Polynomialandwords-introductiontocycliccodes- Polynomialencodinganddecoding-findingcyclic codes-Dualcycliccodes.

Text Book:

Codingtheory, Theessentials–MarcelDekker, Inc. MadtrisonAvenue, New York.

Books for Reference:

- ElwynBerlekamp– AlgebraicCodingTheory–Springer-1970
- San Ling and Chaoping Xing, coding theory A first course, Cambridge University Press, New York (2004)

Semester-VI Major Elective- IV PROGRAMMING IN C++

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Major		Programming	60	-	-	4
	Elective		in C++				
	-IV						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Illustrate and make use of the concepts of tokens, expressions and control structures	K3,K4
CO2	Utilize the functions in C++ and to apply it while writing programs	K1,K2
CO3	Interpret constructors and destructors	K3,K5
CO4	Explain and apply operator overloading while writing programs	K4,K6
CO5	Make use of inheritance and classes to compile a program	К6

► K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

CO-1 SO mapping (Course Articulation Method)							
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5		
COs							
CO1	1	3	3	2	3		
CO2	2	1	3	2	1		
CO3	2	2	2	2	2		
CO4	2	3	3	2	3		
CO5	2	3	3	2	3		
Total contribution of	9	12	14	10	12		
COs to PSOs							
Weighted Percentage	60	80	93.33	66.67	80		
of COs contribution							
to PSOs							

Course Content:

Unit-I:Tokens, Expressions and control structures

Introduction, Tokens, Keywords, Identifiers and constants, Basicdata types,Userdefined data types, storageclasses, Derived data types, Symbolic constants.

UNIT-II: Functions in C++

Introduction ,Themain function, functionprototyping, Call by reference, Return by references, Inlinefunctions, Defaultarguments, constant Arguments, Recursion, Functionoverloading, Friend and virtual functions, Math library functions, C structures Revisited, Specifying a class, Defining member functions, A C++ program with class, Making an outside functions inline, Nesting member functions, Private member functions, Arrays within a class, Memory allocation for objects, Staticmember functions, Array of objects, objects as function arguments, Friend functions, Returning objects.

UNIT-III: Constructors and Destructors

Introduction, Constructors, Parameterizedconstructors, Multipleconstructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, , Constructing Two-dimensional arrays, constant objects, Destructors.

UNIT-IV: Operator Overloading and Type Conversations

Introduction, Defining operator overloading, Overloading unary operator, Overloading Binary operator, Overloading Binary operators using Friends, Manipulation of strings using operators, Some other operator overloading examples, Rules for Overloading Operators

UNIT-V:Inheritance: Extending Classes

Introduction, Defining Derived classes, Single inheritance, Making a private member inheritable, Multilevelinheritance, Multipleinheritance, Hierarchicalinheritance, Hybridinheritance.

Text Book:

E.BalaguruSamy,Object Oriented Programming with C++,TataMcGraw Hill Education Private Limited, New Delhi(Fifth Print 2012).

Book for References :

ReemaThareja,Object Oriented Programming with C++, Oxford University Press(January 2018)

II B. COM BANKING AND E-COMMERCE (IV SEMESTER) – UNDER CBCS PART III – MAJOR CORE - 7 QUANTITATIVE TECHNIQUES

Objectives

1. To provide basic knowledge of mathematical techniques as are applicable to business.

2. To provide logical idea to find out practical solutions for the managerial problems.

3. To provide the basic knowledge of statistical techniques as are applicable to business.

4. To enable the students to apply statistical techniques for quantification of data in business.

Unit I:

Analytical geometry- Distance between two points in a plane-slope of a straight line – equation of straight line – point of intersection of two lines – applications (1) demand and supply (2) cost-output (3) break-even analysis

Unit II:

Matrices – meaning – types – algebra of matrices – addition and subtraction – scalar multiplication – Multiplication of matrices-transpose of a matrix –Determinant – minors and co-factors –inverse of a matrix – solving simultaneous linear equations using matrix method.

Unit III:

Measures of Central Tendency – Mean – Median – Mode – Geometric Mean .Measures of Dispersion-Range – Quartile Deviation – Mean Deviation - Standard Deviation – Co-efficient of Variation. Skewness - methods of studying Skewness - Karl Pearson's Co-efficient of Skewness – Bowley's co-efficient of Skewness.

Unit IV:

Correlation – meaning – types-scatter diagram – Karl Pearson's Co-efficient of Correlation- Rank correlation – Concurrent deviation method. Regression analysis – uses-Regression line – Regression equations – least square method - deviations taken from actual mean and assumed mean method.

Unit V:

Index numbers – meaning – types – its problems – Methods of constructing index numbers – unweighted and weighted indices – Index number tests – Consumer price index numbers - Analysis of time series – Meaning – Importance – Components of time series – Secular trend, seasonal, cyclical and irregular variations – Measurement of trend - Graphic method-Semi average method – Moving average method – Method of least square.

34

Text / Reference Books

- 1. D.S. Sancheti& V.K. Kapoor, Business Mathematics Sultan Chand and Sons, New Delhi.
- 2. M. Manoharan& C. Elango, Business Mathematics, Palani Paramount Publications, Palani.
- 3. Dr. S.P. Gupta, Statistical Method, Sultan Chand & Sons, New Delhi.
- 4. R.S.N. Pillai & Bhagavathi, Statistics-Theory and Practice, S.S. Chand & Co.
- 5. M. Wilson, Business Statistics, Himalaya Publishing House, Mumbai.
- 6. Dr. M. Manoharan, Statistical Methods, Palani Paramount Publications, Palani.
- 7. G.K. Ranganath, Text book of Business Mathematics, Himalaya Publishing House, Delhi.
- 8. D.C. Sanchetti& B.M. Agarwal, Business Mathematics, Sultan Chand and Sons, New Delhi.

Outcomes:

1. To analyse the practical applications of Analytical Geometry in business field.

2. To know about matrix algebra, scalar multiplication and also to find out the inverse of a matrix.

- 3. To know the measures of central tendency and to apply to measure averages.
- 4. To apply the tools on measures of dispersion that are useful for estimating variations.
- 5. To apply the various methods for calculating correlation coefficient.
- 6. To apply regression analysis for estimating values for future period.
- 7. To understand the concepts about indices and time series.

MSU/2021-22 €/UG-Colleges/Part-III (B.B.A.)/ Semester-II / Ppr.no.11/ Allied–2 BUSINESS MATHEMATICS

L	Т	Р	С
4	2	0	4

Course Objectives:

- **1.** To develop mathematical continuity for learning.
- 2. To apply mathematical concepts in finding solutions to business problems.
- 3. To familiarize students with the application of mathematical techniques in business decision process.

Course Outcomes:

- 1. Apply the concept of geometry in the field of business
- 2. Draw and use Venn diagrams to solve real problems in business.
- 3. Use derivatives in marginal analysis
- 4. Application of differential calculus to find the maxima and minima of a function.
- 5. Perform elementary matrix operation and use matrices in business decision making.

Unit I

Analytical geometry – distance between two points in a plane – slope of a straight line – equation of the straight line – point of intersection – demand and supply curves (linear) – market equilibrium – break even analysis.

Unit II

Set theory – definition – types – union, intersection, difference, and complement of sets – De Morgan's Law – Venn diagram – simple set applications – Cartesian product

Unit III

Differential calculus – derivative of a function – differentiation – standard forms – sum, product, quotient rule – differential coefficients of simple functions (**trigonometric functions excluded**) – function of a function rule – simple application to business using marginal concept

Unit IV

Higher order derivatives – maxima and minima – simple marketing models using profit maximization, fencing and container problems only – Integral calculus – standard forms – rules of integration – Definite integral – simple applications – finding total and average cost function – producer surplus and consumer surplus.

Unit V

Matrices – definition – types – addition, subtraction, multiplication of matrices – inverse matrix – solving a system of simultaneous linear equations using matrix inversion technique – rank of a matrix.

(Marks: Theory 40% and Problems 60%)

TEXTBOOKS:

- 1. V.Sundaresan and S.D.Jeyaseelan, Business Mathematics, S Chand Publishers, New delhi
- 2. P.R Vittal, Business mathematics & Statistics, Margham publications, Chennai.
- 3. M. Wilson, Business Mathematics, Himalaya Publising house, Mumbai
- 4. S.R.Arora& Dinesh Khattar, Business Mathematics with applications, S.Chand& company ltd, New Delhi REFERENCE BOOKS:
- 1. R.S, Soni Essentials of Business Mathematics & Business Statistics, Ane Books pvt ltd, New Delhi.
- 2. D.C Sancheti& V.K Kapoor Business Mathematics, Sultan Chand & Sons, New Delhi.
- 3. S.P. Gupta & P.K. Gupta, Business Statistics & Business Mathematics, Sultan Chand & sons , New Delhi,
- 4. D.Bose, An Introduction to Mathematical Methods, Himalaya Publishing

WEB RESOURCES:

- 1. https://www.toppr.com/guides/maths/sets/venn-diagrams/
- 2.https://www.scribd.com/doc/19613606/Applications-of-Matrices-to-Business-andEconomics
- 3. https://www.pearsonhighered.com/assets/samplechapter/0/1/3/4/0134437764.pdf
- 4. http://math.hawaii.edu/~mchyba/documents/syllabus/Math499/extracredit.pdf

CO/PO &PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	Μ	L	L	Μ	S	М	L	М	L
CO 2	М	S	L	S	Μ	S	М	М	L	L
CO 3	S	Μ	Μ	L	S	S	S	М	М	L
CO 4	S	Μ	L	L	Μ	S	S	L	М	L
CO 5	S	Μ	Μ	L	L	S	М	М	L	L
S – Strong			M -	- Mediu	ım	L-L	OW			

MAPPING-COURSE OUTCOME WITH PROGRAMME SPECIFIC OUTCOME

SEMESTER-III Non -Major Elective Paper I FUNDAMENTALS OF STATISTICS-I

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(1)		(C)
Part-III	Non		Fundamentals	30	-	-	2
	major-I		of Statistics-I				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: To introduce the new concept of Measure of Central Tendency to other major students .Also to study about correlation, regression and to solve simple problems.

Course Outcomes: On successful completion of the course, the students should be able to

	ise outcomes: on successful completion of the course, the students should be able to									
CO	Course Outcome	Knowledge Level								
No.										
CO1	Analyse the classification of datas. Also to	K3, K6								
	construct bar diagram and Pie chart.									
CO2	Illustrate measure of central tendency and to	K1,K2								
	find mean, median and mode.									
CO3	Explain the measure of dispersion .Also to	K4,K5								
	find standard deviation, variance, quartile									
	deviation and to obtain the relationship									
	between them.									
CO4	Interpret correlation and to solve rank	K2,K6								
	correlation problems.									
CO5	To find solution for regression equations	K1, K6								
005	TO THE SOLUTION TO TEGLESSION EQUATIONS	K 1, K 0								

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	3	3	3	3	3
CO4	3	2	3	3	2
CO5	1	2	2	1	2
Total contribution of	13	12	14	13	11
COs to PSOs					
Weighted Percentage	86.67	80	93.33	86.67	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Classification of datas-BarDiagram-Pie chart.

UNIT-2:

Measuresofcentraltendency:Mean,median,mode(withfrequency).

UNIT-3:

Measuresofdispersion:Range-standarddeviation, Variance-Quartiledeviation.

UNIT-4:

Correlation-Rankcorrelation(Problemsonly)

UNIT-5:

Regressionequations(Problemsonly) **TextBook:**

Dr. S. Arumugam, A.ThangapandiIssac- Statistics, New Gamma Publishing House, Palayamkottai. (2016)

BooksforReference:

- S.P.Gupta-ElementaryStatisticalMethods,SultanChand&Sons,(2017).
- > T.Veerarajan, FundamentalsofmathematicalStatistics, YesDeePublishing Pvt, Ltd.. (2017)
- C.B.Gupta and Vijay Gupta, An Introduction to Statistical Methods, Vikas Publishing House Pvt.Ltd.New Delhi –(1973)

SEMESTER -IV Non-Major Elective -II FUNDAMENTALS OF STATISTICS-II

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-IV	Non		Fundamentalsof	30	-	-	4
	Major		Statistics-II				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To know the concept of attributes and to study the index numbers and simple problems. **Course Outcomes**: On successful completion of the course, the students should be able to

	courcomes: on successful completion of the course, the students should be use to							
CO	Course Outcome	Knowledge Level						
No.								
CO1	Explain the theory of Attributes	К3						
CO2	Illustrate about index numbers and to	K1,K5						
	determine the weighted index numbers.							
CO3	Analyse and predict consumer price index	K6						
	numbers							
CO4	Evaluate Time series	K4						
CO5		K2						
	Apply curve fitting for straight line ,parabola							
	and exponential curve							

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	1	2	3
CO5	2	3	1	3	3
Total contribution of	12	13	11	13	14
COs to PSOs					
Weighted Percentage	80	86.67	73.33	86.67	93.33
of COs contribution					
to PSOs					

Course Content:

UNIT-I

Theory of attributes-two attributes.

UNIT –II	
	Index number –weighted index number.
UNIT – III	
	Consumer Price index number –conversion of index number.
UNIT –IV	
UNIT-V	Time series –measurement of trends.
	Curve fitting-Straight line -Parabola -Exponential curve.
TextBook:	

Dr. S. Arumugam, A. Thangapandi Issac- Statistics, New Gamma Publishing House, Palayamkottai (2016).

Books for Reference:

- S.P.Gupta-Elementary Statistical Methods, Sultan Chand & Sons, 2017).
- T. Veerarajan Fundamentals of mathematical Statistics, YesDee Publishing Pvt.Ltd.Edition .(2017)

Semester-V

Core-V LINEAR ALGEBRA

Categ	ory	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
		Туре	Code		(L)	(T)		(C)
Part-	III	Core-V		Linear Algebra	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about vectors spaces, Inner product space and linear transformations. Also to solve problems in Matrices

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the definitions and general	K1, K2
	properties of vector spaces. Also to explain	
	subspace. They know where to apply	
	fundamental theorem of homomorphism.	
CO2	Determine the span of a set and to check	K4
	whether the given set is Linearly dependent	
	or not. Also to find basis and dimensions.	
CO3	Illustrate and apply Rank Nullity	K3,K6
	theorem.Explain the definitions and	
	examples of inner product space.Apply	
	Gram Schmidt Orthogonalization process.	
CO4	Construct matrices and also to summarize	K2, K6
	the elementary transformations.Determine	
	the Inverse of matrix and rank of a matrix.	
	To make use of Cayley Hamilton Theorem.	
CO5	Determine Eigen Values and Eigen Vectors.	K4,K5
	Identify bilinear forms and quadratic	
	forms.Also To deduce Diagonal form from	
	Quadratic form.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos		-			
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	2	1	3	2	2
CO5	CO5 2		2	1	3

Total contribution of	12	11	13	12	11
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	86.67	0.8	73.33

Course Content

UNIT-1:

Vectorspaces:Definitionandexamples-Elementaryproperties-subspaceslineartransformations-Fundamentaltheoremofhomomorphism.

UNIT-2:

Spanofaset-linear dependenceandindependence-basisanddimension.

UNIT-3:

Rank - Nullity theorem – Matrix of a linear transformation – Inner product space – Definitionandexamples–orthogonality –orthogonalcomplement–Gram Schmidtorthogonalizationprocess.

UNIT-4:

Matrices –Elementarytransformation–Inverse and power of a matrix using CayleyHamilton'stheorem–Inverse and rank of a matrix using elementary transformations.

UNIT-5:

Eigen values and Eigen vectors – Properties and problems – Bilinear forms – Quadratic forms –Reductionofquadraticformtodiagonalform. **TextBook:**

S.Arumugan&ThangapandiIssac ,Modern Algebra-Scitech Publication,Reprint(2008).

BooksforReference:

- SharmaJ.NandVashisthaA. R.LinearAlgebra-KrishnaPrakashNandir1981.
- > JohnB. Fraleish–AfirstCourseinAbstractAlgebra 7thedition, Pearson, 2002.
- N. Ramabhadran&R.Balakrishnan, Textbookofalgebra VikasPublishingCo.RevisedEdition1985.
- Ward Cheney and David Kincaid, Linear Algebra-Theory and Applications. Jones and Barlett India PVT Ltd, New Delhi -First Edition(2010)

MSU/2021-22/UG-Colleges/Part-III (B.B.A.)/ Semester-I / Ppr.no.5/ Allied-1 BUSINESS STATISTICS

L	Τ	Р	С
4	2	0	4

Course Objectives:

To enable students to

- 1. Understand the concepts of statistics in the context of business.
- 2. Apply the statistical tools in decision-making.
- 3. Utilize statistical analysis in Research

Course Outcomes:

- 1. Apply descriptive statistics in effective business decision making
- 2. Ascertain cause and effect relationship between business factors and predict direction of business
- 3. Analyse time series data to identify trend and seasonal variations to forecast and take business decisions
- 4. Construct and compare index numbers to analyse business and economic activities
- 5. Utilize statistical analysis in business projects to arrive at solutions

UNIT I MEASURE OF CENTRAL TENDENCY

Measures of Central value- characteristics of an ideal measure- Measures of Central tendency –mean, median, mode – Application in Business decisions – Measures of Dispersion – absolute and relative measures of dispersion – Range, Quartile Deviation, Mean Deviation, Standard Deviation, Co-efficient of Variation – Moments, Skewness, Kurtosis - (Conceptual frameworkonly)

UNIT II CORRELATINON ANALYSIS

Correlation analysis: Meaning and Significance – Correlation and Causation, Types ofCorrelation, Methods of studying Simple Correlation – Scatter diagram, Karl Pearson's Coefficientof Correlation, Spearman's Rank Correlation co-efficient.

UNIT III REGRESSION ANALYSIS

Regression Analysis - Regression Vs Correlation, Linear Regression, Regression lines, Standard error of estimates.

UNIT IV TIME SERIES ANALYSIS

Time Series-Meaning and significance – utility, components of Time series- Measurement of Trend: Method of least squares, Parabolic Trend and Logarithmic trend.

UNIT V INDEX NUMBERS

Meaning and significance, problems in construction of index numbers, methods of constructing index numbers – weighted and unweighted, test of adequacy of index numbers, chain index numbers, base shifting, splicing and deflating index numbers

(Marks: Theory 40% and Problems 60%)

TEXTBOOKS:

1. S.P.Gupta, Statistical Methods, Sultan Chand& Sons, New Delhi.

2. N.Arora, S.Arora; Statistics for Management; S.Chand and Company Ltd.; New Delhi

3. R.S.N. Pillai and Bhagavatyhi, Statistical Methods, S.Chand and Company Ltd.; New Delhi

4. Wilson, Statistics for Commerce and Management, Himalaya Publishing house, Mumbai

REFERENCE BOOKS:

1. P.R. Vittal, Business Mathematics and Statistics, Margham publications, Chennai.

2. J.K.Sharma, Business Statistics, Pearson education, New Delhi,

. 3. Richard.I.Levin, David.S.Rubin; Statistics for Management; Pearson Education; New Delhi 4. Divya Saxena; Business Statistics; Vayu Education of India; New

WEB RESOURCES:

1. https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode/

2. https://www.toppr.com/guides/business-mathematics-and-statistics/measures-ofcentral-tendency-and-dispersion/measure-of-dispersion/

3. https://www.toppr.com/guides/business-mathematics-and-statistics/measures-ofcentral-tendency-and-dispersion/measure-of-dispersion/

4. <u>https://sol.du.ac.in/mod/book/view.php?id=1317&chapterid</u> =1071

MAPPING-COURSE OUTCOME WITH PROGRAMME SPECIFIC OUTCOME

CO/PO &PSO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	М	L	L	Μ	S	М	L	М	L
CO 2	Μ	S	L	S	Μ	S	М	М	L	L
CO 3	S	Μ	Μ	L	S	S	S	М	М	L
CO 4	S	Μ	L	L	Μ	S	S	L	М	L
CO 5	S	Μ	Μ	L	L	S	М	М	L	L
	S	S – Strong			- Mediu	ım	L-L	OW		