Semester - IV

Core - IV

Paper-VI (6hrs/week)

ABSTRACT ALGEBRA (90 hours) (ASMA41)

Objectives:

- To acquire the knowledge about the concept of groups, rings and fields.
- To study the concept of homomorphism.

Course Learning Outcomes: It enables the students to

- 1. grasp the concept of cyclic groups, normal subgroups.
- 2. know the fundamental theorems of homomorphism and how to apply it.

UNIT - 1:

Groups – definition and examples – subgroup – order of an element – centre of a group – Normaliser and Centralizer – Product of two Subgroups – order of HK – Intersection and union of subgroups.

UNIT - 2:

Cyclic groups – generators of a cyclic group – cosets – Lagrange's theorem – Euler's theorem – Fermat's theorem.

UNIT - 3:

Normal Subgroups: Quotient groups - Group Homomorphism - Canonical homomorphism - Kernel of a homomorphism - Isomorphism - Automorphism - Inner automorphism - Permutation groups - Cayley's theorem.

UNIT -4:

Rings: Definition and examples – Types of rings – Elementary properties of a ring – Integral domain – Field – Subrings – Subfields – Ideals – Principal ideal – Quotient ring – Maximal and prime ideals – Principal ideal domain – UFD.

UNIT -5:

Homomorphism of rings – Isomorphism – Kernel of a homomorphism – Fundamental theorem – Polynomial rings – Division algorithm.

Text Book:

S.Arumugam and A.Thangapandi Issac "Modern Algebra" - Scitech Publications, Private limited. (2008)

Books for Reference:

- 1. M. L. Santiago, Modern Algebra McGraw Hill Education India Pvt. Limited, (2002).
- T. K. ManickaVachagam pillai and others Modern Algebra S. Visvanathan Publishers (2011).
- Visvanathan nayak, Modern Algebra Emerald Publishers, Reprint 1992.

Semester - IV

Skill Based Core - Paper - II (4hrs/week)

TRIGONOMETRY, LAPLACE TRANSFORMS AND FOURIER SERIES (60 hours) (ASMA4A)

Objectives:

- To understand the concept of Trigonometry.
- To acquire knowledge about Laplace transform and its inverse.
- To study the concept of Fourier series and solve problems in Fourier series.

Course Learning Outcomes: It enables the students to

- 1. know the relation between hyperbolic function and circular function.
- 2. understand the concept of even and odd function.

UNIT-1:

Trigonometry: Expansion of sinnx, cosnx, tannx and expansions of sinⁿx and cosⁿx.

UNIT - 2:

Hyperbolic functions – Relation between hyperbolic functions and circular functions – Inverse hyperbolic functions – Logarithm of a complex number –Summation of series using C+ iS method.

UNIT - 3:

Laplace transforms - Inverse Laplace transforms.

UNIT - 4:

Solving linear differential equations with constant coefficients and simultaneous equations using Laplace Transforms.

UNIT -5:

Fourier Series – Definition – Finding Fourier coefficients for a given periodic function with period 2π and 2l – odd and even functions – Half range series.

Text Book:

- Arumugam. S and Thangapandi Issac. A Trigonometry and Fourier Series.
- T. K. Manickavachagam Pillai and S. Narayanan Differential equations and its applications.

Books for reference:

- T. Veerarajan Algebra and Trigonometry YES DEE Publishing pvt. Ltd., Chennai. (2020).
- Ray Hanna .J Fourier Series, Transforms and Boundary value Problems, Dover Publications New York, 2008.