Reg. No.:

ae No.: 22084 E Sub. Code: SMCO 42/ **AMCO 42**

n. (CBCS) DEGREE EXAMINATION, APRIL 2022

Fourth Semester

Commerce — Core

BUSINESS MATHEMATICS

(For those who joined in July 2017 onwards)

: Three hours

Maximum: 75 marks

PART A
$$-$$
 (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

The general form of Quadratic equation is

- $ax^2 + bx + c = 0$ (a)
- (b) x + y = 0
- x + y + c = 0
- all the above (d)

 $\sqrt{2}$ is — number.

- a natural
- a whole
- a rational (c)
- (d) an irrational

If A is a 2×3 matrix, B is a 3×2 then A + B is — matrix.

- (a) 2×2
- (b) 3×3
- 3×2 (c)
- (d) not defined

Simple interest SI =

- (a)
- (b) $p+n+\frac{r}{100}$
- - $p\left(1+\frac{r}{100}\right)^n$ (d) $p\left(1-\frac{r}{100}\right)^n$

Simple interest on 20,000 or 2% or p.a. for one year is

- 4,800 (a)
- 4,000 (b)
- (c) 800
- (d) 400

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

inswer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

Find the quadratic equation whose roots are (a) $x = \frac{1}{4}$ and x = -1.

Show that $\sqrt{2}$ is an irrational number.

Page 3 Code No.: 22084 E

- - (a)
- (b)
- 0 (c)
- (d) 4
- Write the following in the log form: $5^3 = 125$
 - $\log_3 125 = 5$
- $\log_{125} 3 = 5$
- $\log_5 125 = 3$
- $\log_5 3 = 5$ (d)
- The distance between the points (0, 0) and (-2, 3) 5.
 - $\sqrt{2}$ (a)
- $11\sqrt{2}$ (b)
- $\sqrt{13}$
- (d) 5
- The slope of the line y = 2x + 36.
 - 2 (a)
- (b)
- (c) 2/3
- (d) 3/2
- A matrix in which there is only one row is called — matrix.
 - Unit (a)
- Column
- Scalar (c)
- Row (d)

Page 2 Code No.: 22084 E

Subtract $3x^2 - 5$ from $5x^2 - 6$. 12. (a)

Or

- Add $5x^2 6$ with $3x^2 5$.
- Simplify: (i) $2^{-4}2^{-5}$ (ii) $5a^{0}$. 13. (a)

Or

- Find the equation the line passing through the points (2, -3) and (-4, 5).
- Find the adjoint of the matrix $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. 14. (a)

- (b) If $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ prove that A + B = B + A.
- Find the value of x in the proportion: 15. (a) (6x+2):(7x+4)=4:5.

Or

Define an annuity and explain its types. (b)

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

- 16. From the following equations find:
 - (i) The sum of two roots.
 - (ii) The product of two roots.
 - $x^2 5x + 2 = 0$ (1)
 - $2x^2 + 9x + 4 = 0$ (2)
 - $x^2-x-6=0.$ (3)

Or

- Solve the following system of equations. x + y + z = 6; 3x - 2y + z = 2; x + y + z = 0.
- If $2^{x+1} + 3 \cdot 2^{x-3} = 76$ find the value of x. 17.

Or

If $\log \frac{a+b}{2} = \log(2(ab)) - \log(a+b)$ show that a = b.

Page 5 Code No.: 22084 E

18. Find the equation of the line whose slope is $\frac{3}{2}$ and which cuts off 3 units along y axis.

Or

- Find the equation of the line through the point (1, -2) and parallel to the line 3x - y + 7 = 0.
- 19. (a) If $A = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$ find A^{-1} .

(b) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & -2 \end{bmatrix}$, $C = \begin{bmatrix} 5 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$

verify that 4(A+B) = 4A + 4B.

20. Calculate the compound interest on Rs. 7,500 for $3\frac{1}{2}$ years at 5.5% p.a.

 \mathbf{Or}

The difference between the simple interest and the compound interest is Rs. 384.60 in 4 years. Find out the sum.

Page 6 Code No.: 22084 E