

Don Bosco College of Arts and Science, Keela Eral

VISION AND MISSION

Vision:

Don Bosco College of Arts and Science, inspired by divine and human values, envisages enlightenment and empowerment of the youth towards personal and social transformation.

Mission:

1. To make higher education qualitative, inclusive, cost effective and accessible to the rural masses.

2. To exercise a preferential option in favor of the rural youth especially the First Generation Learners and socially and economically weaker sections of the society.

3. To facilitate the actualization of individual potential, integrating knowledge, skills, values and behaviour and prepare the students to face the global opportunities and challenges of a meaningful life and career.

4. To constantly pursue higher standards of excellence, integrity and credibility in all endeavors and transform the students, in collaboration with all the stakeholders of higher education, to be agents of social transformation.

DEPARTMENT OF MATHEMATICS

VISION AND MISSION

1. Vission of the Department : To centre stage Mathematical Knowledge in the curriculam, instill analytical and logical thinking among students and promote Mathematical thought as an important area of human thought.

2. Mission of the Department : To provide every student of our department, the required Mathematical Knowledge for their professional carrer and further study.

PREAMBLE

The LOCF (Learningoutcomes based curriculum framework) committee constituted University Grants Commission (UGC) is pleased to submit the report concerning the syllabi of B.Sc with Mathematics as a subject. The committee discussed the framework of syllabi in its meetings and suggests the implementation these syllabi in the Colleges based on following facts.

- 1. The learning outcomes of each paper are designed so that these may help learners understand the main objectives of studying the course
- 2. This will enable learners to select elective papers depending on the individual inclinations and contemporary requirements
- 3. The objectives of the LOCF are to mentally prepare the students to learn mathematics leading graduate degree with mathematics as a subject.
- 4. These syllabi in mathematics under CBCS are recommended keeping in view of the wide applications of mathematics in science, engineering, social science, business and a host of other areas.
- 5. The study of the syllabi will enable the students to equip with the state of the art of the subject and will empower them to get jobs in technological and engineering fields as well as business, education and healthcare sectors.
- 6. The LOCF committee in Mathematics had prepared this draft paying suitable attention objectives and learning outcomes of the papers. These syllabi may be implemented with minimum modifications with appropriate justificationskeeping in view regional, national and international contents and needs.
- 7. The outcomes of each paper may be modified as per the local requirements.
- 8. The text books mentioned in references are denotative/demonstrative. The divisions of each paper in units are specified to the context mentioned in course. These units will help the learners to complete the study of concerned paper in certain periods and prepare them for examination.
- 9. The mathematics is a vast subject with immense diversity. Hence it is difficult for every student to learn each branch of mathematics, even though each paper has its unique importance. Under these circumstances,LOCF in Mathematics suggests a number of elective papers also with compulsory papers. A student can select elective papers as per his needs and interests.
- 10. The committee expects that the papers may be taught using various Computer Algebraic systems (CAS) softwares such as Mathematica,MATLAB,Maxima and R to strengthen the conceptual understanding and to wide up the horizon of student's self experience.
- 11. The committee of the LOCF in Mathematics expects that the concern colleges will encourage their faculty members to include necessary topics in addition to courses suggested by LOCF committee .It is hoped that the needs of all around development in the careers of learners will be fulfilled by the recommendations of LOCF in mathematics.

4. PROGRAMME STRUCTURE

Marks Part Sub. Subject **SubjectTitle** Credits Hrs/ Maximum Passing **Status** No. Week Minimum Int. Ext Tot. Ext. Tot. 25 25 Tamil/OtherLanguages 4 75 100 30 40 Language 6 1 4 100 30 Π 2 CommunicativeEnglish-I 75 40 Language 6 Calculus and 25 3 Core-4 75 100 30 40 6 ClassicalAlgebra IPaper-I ProfessionalEnglishforP 25 30 4 Addonmajor(4 4 75 100 40 I hysicalSciences-I Mandatory) III Paper-II Statistics-I 5 Allied-25 30 6 3 75 100 40 OR I(ForMaths Physicswith Practical students) /Chemistry withPractical/ 100 30 40 6 5 25 75 ComputerScience** AlgebraandDifferentialE Allied-I 4 25 75 100 30 40 6 quations (ForScience students) IV 2 25 75 100 30 6 Common EnvironmentalStudies 2 40 Total 30 21/23 Language Tamil/OtherLanguages 4 25 75 100 30 40 Π 7 6 II Language Communicative English-II 6 4 25 75 100 30 40 8 III 4 25 100 30 9 Core-Differential Equationsand 6 75 40 Analytical IIPaper-GeometryofThree III Dimensions 10 Addon ProfessionalEnglishforP 4 4 25 75 100 30 40 hysicalsciences-II major(Mandat ory)Paper-IV 11 Allied-Statistics-II OR 3 25 75 100 30 40 6 Physics with Practical II(ForMath Chemistry with Practical 100 sStudents) 6 5 25 75 30 40 /ComputerScience^{**} Allied–II(For Vector Calculus 25 6 4 75 100 30 40 ScienceSt &FourierSeries udents) IV 12 Common Valuebasededucation 2 2 25 75 10 30 40 30 21/23Total 0 ****** The Allied Computer Science shall be taken by the Department of Mathematics

B.Sc. Mathematics (ChoiceBased Credit System)

Sem	Par	Sub.	Subject	Subject Title	Hrs/	cred	Ν		Mar	•		
	L	INO.	Status		wee k	its	Maximum			Passing minimum		
							Int.	Ext.	Tot.	Ext.	Tot.	
II	Ι	13	Language	Tamil/Other Languages	6	4	25	75	100	30	40	
	II	14	Language	English	6	4	25	75	100	30	40	
	III	15	CoreIII Paper-V	SequencesandSeries	6	4	25	75	100	30	40	
		16	Allied-II	Statistics-I OR Physics with Practical / Chemistrywith Practical / Computer Science	6 6	3	25 25	75 75	100 100	30 30	40	
		17	Skill Based Core	Vector Calculus	4	4	25	75	100	30	40	
	IV	18	Non- Major Elective	Anyoneofthefollo wing Mathematics forCompetitiveExamina tions-I Fundamentals of Statistics-I	2	2	25	75	100	30	40	
		19	Common	Yoga*	2	2	25	75	100	30	40	
			Total		3 0	25 /2 7						
Ι		20	Language	Tamil/Other Languages	6	4		25		100	30	2
II		21	Language	English	6	4		25		100	30	4
III	_	22	Core-IV Paper-VI	Abstract Algebra	6	4		25		100	30	
		23	Allied-II	Statistics-II OR Physics with Practical / Chemistry with Practical/ Computer Science	6	3 5	25 25			100 100	30 30	2
		24	Skill Based Core	Trigonometry, Laplace Transforms and Fourier Series	4	4		25		100	30	
IV		25	Non- Major Elective	Anyone of the Following: Mathematics for Competitive Examinations-II Fundamentals of Statistics-II	2	2		25		100	30	
		26	Common	Computers for Digital Era*	2	2		25		100	30	
V			Extension activities	NCC/NSS/YRC/YWF/ PE	-	1		-		-	-	
			Total		3	26				I	1	

					0	/2				
						8				
1	III	27	Core-V Paper-VII	LinearAlgebra	5	4	25	100	30	40
		28	Core-VI	RealAnalysis	5	4	25	100	30	40

			Paper-VIII								
		29	Core-VII	Statics	5	4	25	75	100	30	40
			Paper-IX								
		30	Core-VIII	Integral Transforms	5	4	25	75	100	30	40
			Paper-X	and Z Transforms							
		31	Major	Anyone of the Following:							
			Elective-I	Programming in C							
			Paper-XI	Discrete	4	4	25	75	100	30	40
				Combinatorial							
				Mathematics							
		32	Major	Anyone of the Following:							
			Elective	Operations							
			II-II	Research-I							
			Paper-XII	Stochastic Process	4	4	25	75	100	30	40
				Math Typing using	-			, 0	100	20	
	IV	33	Skill	Personality							
			Based	Development	2	2	25	75	100	30	40
			Common	-							
	1	1	Total		30	26		1	1	1	1
VI	III	34	Core-IX	ComplexAnalysis	5	4	25	75	100	30	40
			Paper-XIII								
		35	Core-X	GraphTheory	5	4	25	75	100	30	40
		36	Core-XI	NumberTheory	1	4	25	75	100	20	40
		50	Paper-XV	Number Theory	4	4	23	15	100	50	40
		37	Core-XII	Dynamics	4	4	25	75	100	30	40
			Paper-XVI	· · · · ·							
		38	Core-XIII	NumericalMethods	4	4	25	75	100	30	40
		39	Major	Any one of the							
		59	Elective-III	following							
			Paper-XVIII	Astronomy	4	4	25	75	100	30	40
				Fuzzy	т			, , , ,	100	50	
				Mathematics							
				Mathematical Modeling							
		40	Major	Any one of the							
			Elective-IV	following							
			Paper-XIX	Operations	4	4	25	75	100	30	40
				Research-II	т			, , , ,	100	50	
				Coding Theory							
				Programming in							
				C++ Total	30	28					
1				10181	30	20	1				

5. EVALUATION SCHEME (INTERNAL, EXTERNAL, PASSING MINIMUM)

Evaluation Scheme

25 Marks
75 Marks
100 Marks
40 Marks

6. MODEL QUESTION PAPER

MODEL QUESTION PAPER- CBCS-PATTERN (UG MATHEMATICS)

MAXIMUM MARKS: 75

TIME: 3 HOURS

Part -A (10×1 = 10 Marks)

Answer all the questions, Choose the correct answer

Question No. 1,2	Unit –I	Question No. 7,8	Unit –IV
Question No. 3,4	Unit -II	Question No. 9,10	Unit –V
Question No. 5,6	Unit –III		

Part $-B(5 \times 5 = 25 \text{ Marks})$

Answer all the questions, Choosing either (a) or (b).

Question No. 11(a) or11 (b)	Unit –I	Question No. 14(a) or 14 (b)	Unit –IV
Question No. 12(a) or12 (b)	Unit -II	Question No. 15(a) or15 (b)	Unit-V
Question No. 13(a) or13 (b)	Unit –III		

Part -A (8×5 = 40 Marks)

Answer all the questions, Choosing either (a) or (b).

Question No. 16(a) or16 (b)	Unit –I	Question No. 19(a) or19 (b)	Unit –IV
Question No. 17(a) or17 (b)	Unit –II	Question No. 20(a) or20 (b)	Unit –V
Question No. 18(a) or18 (b)	Unit –III		

MODEL QUESTION PAPER CALCULUS AND CLASSICAL ALGEBRA

Time: Three hours

Maximum: 75 marks.

Part-A ($10 \times 1 = 10$ marks) Answer All questions

Sl.No	Choose the correct Answer.	Course	Knowledge Level
		outcome	
1.	The curvature of the curve $ax+by+c=0$ is	CO 1	K1, K5
	a) b b) a c) 0 d) none of the above		
2.	The radius of the curvature of $y = e^x$ at (0,1) is	CO 1	K1, K5
	a)1 b) 2 c) $2\sqrt{2}$ d) none of the above		
3.	The value of $\int_{1}^{\beta} \int_{1}^{\alpha} \frac{axay}{xy} = \dots$	CO 2	K2, K3
	a) $log\left(\frac{a}{b}\right)$ b)log (ab) c) logalogb d) none of the above		
4.	The Jacobian of $u = x + y$ and $v = x - y$ is a) 2 b) 1 c)-2 d)none of the above	CO 2	K2, K3
5.	$\int_{0}^{1} x^{2}(1-x)dx = \cdots $	CO 3	K2, K4
	a)2 b) $_{12}^{1}$ c) $_{3}^{1}$ d)none of the above		
6.	$\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{1} r^{2} \sin\theta dr d\theta d\varphi = \dots$	CO 3	K4
	a) $\frac{\pi}{2}b)\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) none of the above.		
7.	The least degree of the equation with rational coefficients		K4, K5
	one of whose roots $\sqrt{2} + \sqrt{3}$ is	CO 4	
	a) 3 b)2 c) 4 d) none of the above		
8.	If α , β , γ are the roots of $r^3 + nr^2 + ar + r = 0$ then Σ^1	CO 4	К6
	$ \begin{array}{c} 11 \ \alpha, p, \gamma \ \alpha e \ \alpha e \ result = resu$		-
	a) $\frac{1}{r}$ b) $\frac{1}{r}$ c) $\frac{1}{r}$ d) none of the above		
9.	The roots of the equation $x^n + 1=0$ (n is even) are	CO 5	К3
	a) All imaginary b) (n-1) imaginary		
	c)(n-2) imaginary d) none of the above		
10	One of the roots' of the equation $2x^3 + 3x^2 - 3x - 2 = 0$	CO 5	К6
	is -2, the other roots are		
	a)-2,-1 b) $\frac{-1}{2}$, 1 c) $\frac{-1}{2}$, -1 d) none of the above		
I		1	

Sl.No	Answer ALL questions, choosing either (a) or (b)	Course	Knowledge Level
		outcome	
11.	a) Find the p-r equation (pedal equation) of the curve $r^2 = a^2 Sin2\theta$ Or	CO 1	K1
	b) Find the co-ordinates of the center of curvature of the curve $x^3 + y^3 = 3axy$ at $(\frac{a}{2}, \frac{a}{2})$.	CO 1	K1
12.	a) Find the area of the region common to $y^2 = 4ax$ and $x^2 = 4ay$.	CO 2	K2, K3
	b) If $u = 2xy$, $u = x^2 - y^2$, $x = r\cos\theta$, $y = r\sin\theta$, evaluate $\frac{\partial(wv)}{\partial(r,\theta)}$ without actual substitution.	CO 2	K2, K3
13.	a) Prove that $]\frac{n^{+1}}{2} = \frac{(2n)! \sqrt{\pi}}{4^n n!}$ Where n=0,1,2 Or	CO 3	К5

	b) Prove that $\int^{\pi/4} Sin^p \theta Cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right)^0$	CO 3	K5
14.	a) Show that the sum of the 6 th powers of the roots of $x^7 - x^4 + 1 = 0$ is 3 Or	CO 4	K2, K4
	b) If α , β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$, form the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$	CO 4	K2, K5
15.	a) Transform the equation $x^4 - 4x^3 - 18x^2 - 3x + 2$ = 0 into an equation with the third term absent. Or	CO 5	K6
	b) Remove the fractional coefficient from the equation $x^3 + \frac{1}{4}x^2 - \frac{1}{16}x + \frac{1}{72} = 0$	CO 5	К6

PART C – $(5 \times 8 = 40 \text{ marks})$

SI N a	Answer ALL succeions abassing either (-) (b)	Comme	Veragelada a Larra
SI.NO	Answer ALL questions, choosing either (a) or (b)	outcome	Knowledge Level
16.	a) Find the coordinates of the center of curvature of		K1, K6
	$y = x \log x$ at the point where $\frac{dy}{dx} = 0$.	CO 1	
	Or	GO 1	
	b) Find the evolute of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$	CO 1	K1. K6
17.	a) By changing the order of integration, evaluate the		K2, K4
	integral $\int_{0}^{1} \int_{0}^{2-y} ry dr dy$	CO 2	,
	$\lim_{y \to y} \lim_{y \to y} uxuy$		
	b) By changing into polar coordinates, show that		
	$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy = \pi$. Hence evaluate	CO 2	K2, K4
	$\int_{0}^{\infty} a^{-t^{2}} dt \qquad 4$		
18.	a) Evaluate $\int_{0}^{1} x^{m} (1 - x^{n})^{p} dx$ in terms of gamma		K3, K5
	functions and hence find $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$	CO 3	
	$\int_{\sqrt{1-x^n}}^{\sqrt{1-x^n}}$	0.05	
	b) Using gamma functions evaluate $xy(1 - x - x)$		
	$w^{1/2}$ dxdy over the area enclosed by the lines	CO 3	K3, K5
	x = 0, $y = 0$ and $x + y = 1$ in the positive		
	quadrant.		
19.	a) Solve $6x^3 - 11x^2 + 6x - 1 = 0$ where roots arein		К3
	harmonic progression	CO 4	
	Or 5+65+65+45		
	b) If $a + b + c + d = 0$, show that $a \frac{a + b^2 + c^2 + a^2}{5} = \frac{1}{5}$	CO 1	17.2
	$a^2+b^2+c^2+d^2$ $a^3+b^3+c^3+d^3$	0.04	К3
20	$\frac{2}{2} \cdot \frac{3}{3}$		17.1
20.	a) Show that the equation $x^2 - 3x^2 - 4x^2 - 2x + 1$		K1
	by diminishing the roots by unity. Hencesolve the	CO 5	
	given equation.	000	
	Or		
	b) Solve the equation $6x^6 - 35x^5 + 56x^4 - $		
	$56x^2 + 35x - 6 = 0.$	CO 5	K1

➤ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

7. PROGRAMME OUTCOMES FOR B.Sc MATHEMATICS

PROGRAMME OUTCOMES

- 1. Bachelor's degree in mathematics is the culmination of in-depth knowledge of algebra, calculus,geometry,differential equations and several other branches of mathematics. This also leads to study of related areas like computer science and statistics. Thus, this programme helps the learners in building a social foundation for higher studies in mathematics.
- 2. The skills and knowledge gained has intrinsic beauty, which leads to proficiency in analytical reasoning. This can be utilized in modelling and solving real life problems
- 3. Students undergoing this programme learn to logically questions assertions, to recognise patterns and to distinguish between essential and irrelevant aspects of problems. They also share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn behave responsibly in a rapidly changing independent society
- 4. Students completing this programme will be able to present mathematics clearly and precisely, make vague ideas precise by formulating them in the language of mathematics, describe mathematical ideas from multiple perspectives and explain fundamental concepts of mathematics to non-mathematicians.
- 5. Completion of this programme will also enable the learners to join teaching profession in primary and secondary schools.
- 6. This programme will also help students to enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

8. PROGRAMSPECIFIC OUTCOMES

PROGRAM SPECIFIC OUTCOMES

After the completion of B.Sc. program in mathematics, the students are able to have

PSO 1: A Solid Foundation in Knowledge: B.Sc. degree is the culmination of depth knowledge of my core branches of mathematics such as Calculus, Classical Algebra, Analytical Geometry, Differential Equations, Sequence and Series, Abstract Algebra, Real and Complex Analysis, Number Theory, Mechanics, Operation Research, Statistics, Graph Theory, Discrete Mathematics, Trigonometry, Transforms and their application and C++/Python. Thus, this programme helps students in creating a solid foundation for further higher studies and research in mathematics

PSO 2: A Competency in Skills: The skills and knowledge gained have intrinsic logic which leads to proficiency in analytical reasoning critical understanding, analysis and synthetic in order to solve theoretical and practical problems. This can orient students towards applications of mathematics in other disciplines andmoreover, it can also be applied in modelling and solving the real-life problems.

PSO 3: A Problem-Solving Techniques: Students undergoing this programme learn to logically understand the question assertions to classify the patterns and to evaluate the difference between the necessities and unnecessities of the problems which helps to analyze the problem clearly and to take correct decision for solving the problems.

PSO 4: Interdisciplinary and Research Skills: Students completing this programme will be able to create and present mathematical concepts clearly and precisely, to describe mathematical ideas from multiple perspectives and to explain fundamental concepts of mathematics to non-mathematics people in a better manner.

PSO 5:A Proficiency in Employments: The programme will help students build up with employability for government jobs, jobs in banking, insurance and investments sectors, data analysis jobs and jobs in various other public and private enterprises.

COURSE OUTCOMES

	Calculus and Classical Algebra								
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit		
	Туре	Code	Title	(L)	(T)		(C)		
Part-III	Core-I		Calculus	90		-	4		
			and						
			Classical						
			Algebra						

Semester-I Core-I Calculus and Classical Algebra

Contact hours per semester:90 Contact hours per week:6

eonitate notars							
Year	Semester	Internal	External	Total marks			
		Marks	Marks				
Ι	Ι	25	75	100			

Objective: To explain the curvature and radius of curvature in polar coordinates and Cartesian coordinates. Also to find the roots of the equations by various methods.

Course Outcomes: On successful completion of the course, the students should be able to

СО	Course Outcome	Course Attainment
No.		
C01	Apply the mathematical knowledge to analyze the properties of a curve such as curvature, radius of curvature, Involute and Evolute.	K3, K4
CO2	Classify double and triple integrals	K4
CO3	Identify Beta and gamma function and to apply the rules of beta and gamma function in evaluating double and triple integrals.	K3
CO4	Construct different types of equations and to find the roots of the equations by Newton's Theorem	K1,K6
CO5	Solve the different types of reciprocal equations and to find the number of real roots using Descartes rule of signs.	К6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

)		
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	2
CO2	2	3	3	3	1
CO3	3	3	3	1	1
CO4	3	1	3	2	2
CO5	3	1	2	1	2
Total contribution of	14	11	14	10	8
COs to PSOs					
Weighted Percentage of	93.33	73.33	93.33	66.66	53.33
COS contribution to PSOS					

UNIT-1:	Curvature, Radius of Curvature and Centre of curvature in Cartesian and polar Co- ordinates-Pedal equation-Involute and Evolute.
UNIT–2: UNIT–3:	Double and Triple Integrals -Changing the order of integration-Jacobians and change of variables.
UNIT-4:	Beta and Gamma functions – Applications of Beta and Gamma Functions in evaluation of Double and Triple Integrals.
	Theory of Equations – Formation of equations –Relation between roots and coefficients – symmetric function of the roots.Sum of the powers of the roots of an equation–Newton'stheorem.
UNIT-5:	Reciprocal equation-Transformation of equations-Descarte's rule of signs.

TextBooks:

- 1. Narayanan.S and T.K.ManickavachagamPillai-Differential Equations and its applications,
- 2. S.Viswanathan Printers Pvt.Ltd,2006.
- 3. ManickavachagamPillai.T.K,andS,Narayanan -Algebra -Viswanathan Publishers and PrintersPvt.Ltd,2004.

Books for Reference:

- 1 KandasamyPandK. Thilagavathi- Mathematics forB.Sc., VolumeII-2004,S.Chand&Co.,NewDelhi.
- KandasamyPandK.Thilagavathi-MathematicsforB.Sc.,-2
- 2004, VolumeIandVolumeIV, S. Chand&Co., NewDelhi.
 Apostol T.M. Calculus, Vol. I (4thedition) John Wiley and Sons, Inc., Newyork1991.
 Apostol T.M. Calculus, Vol. II(2ndedition)JohnWiley andSons, Inc., NewYork1969.

Semester-I/III Allied Paper-I Statistics- I (For Mathematics Students)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-III	Allied		Statistics-I	90	-	-	3

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I/II	I/III	25	75	100

Objective: To study the concepts of measures of dispersion and measures of central tendencies and also to develop the concept of probability distributions.

Course Outcomes: On successful completion of the course ,the students should be able to

CO	Course Outcomes	Knowledge Level
No.		
CO 1	Find and relate the concepts of moments, skewness and kurtosis and to demonstrate the method of least squares and to classify parabolic, exponential and logarithmic curves.	K1, K2, K3
CO 2	Interpret correlation and regression and to illustrate Karl's Pearson's coefficient of correlation and also the lines of regression and coefficient of regression	K2
CO 3	Develop the statistical techniques used in the theory of attributes and to analyze consistency of data and criteria independence and to interpret Yule's coefficient of association.	K3, K4
CO 4	Explain distribution function and its properties, able to find mathematical expectation and to find the cumulants using generating function.	K2
CO 5	Distinguish discrete and continuous probability distributions and to construct binomial, Poisson distribution	K4, K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	2	1
CO2	3	2	3	3	2
CO3	2	2	3	2	1
CO4	2	1	2	1	1
CO5	3	2	3	2	2
Total contribution of	13	9	14	10	7
COs to PSOs					
Weighted Percentage	86.66	60	93.33	66.67	46.66
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Moments, Skewness and Kurtosis-Curve fitting-method of least squares–Fitting lines–Parabolic, Exponential and Logarithmic curves.

UNIT-2:

Correlation and Regression – Scatter Diagram – Karl Pearson'scoefficient of correlation – Properties – Lines of Regression–Coefficient of Regression and properties–Rank Correlation.

UNIT-3:

Association of Attributes –Consistency of data–Criteria independence – Yule's Coefficient of Association.

UNIT-4:

Random variable – Distribution function – Properties of Distribution function – MathematicalExpectation – Multiplication theorem of Expectation – Moment generating function – Cumulants– Characteristic function – Properties of Characteristic function.

UNIT-5:

Discrete and continuous Probability Distributions - Binomial and Poisson Distribution and their moments,Generating function,characteristic function,properties and simple applications.Normal Distribution —Standard normal distribution and their properties—simple problems.

TextBooks:

- 1. Arumugam&ThangapandiIsaac,Statistics,New Gamma Publishing House,July 2016 for UnitI,II,III
- 2. Gupta.S.C and V.K.Kapoor-Fundamentals of Mathematical Statistics,Sultan Chand &sons,NewDelhi.(2002) for (Unit IV &V)

BooksforReference:

- 1. Vittal, V.R., Mathematical Statistics, Maragatham Publications, 2004
- 2. D.C.Sacheti&KapoorStatistics,Sultan Chand & Sons, New Delhi,2017.

Semester -II	
Core II	
Differential Equations and Analytical Geometry of Three dimension	n

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-IV	Core-II		Differential Equations and Analytical Geometry of Three dimension	90	-	-	4

Contact hours per semester:90 Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
Ι	Π	25	75	100

Objective: To explain ordinary differential equations with constant and variable coefficients and to describe sphere, intersection of two spheres and tangency of spheres

Course Outcomes:	On successful	completion	of the course,	the students	should be able to
-------------------------	---------------	------------	----------------	--------------	-------------------

CO No.	Course Outcomes	Knowledge Level
CO1	Solve the differential equations which are all solvable for x, y, p and Clairaut's form.Also, to illustrate the method of solving the differential equations of the form f_1 (D)x+g ₁ (D)y=h ₁ t, f ₂ (D),x+ g ₂ (D)y = h ₂ (t).	K2,K6
CO2	Identify and solve the second order linear differential equation with constant coefficients and to interpret the linear equations of second order with variable coefficients.	K2, K3, K6
CO3	Analyze the 3D-co-ordinate systems and how to find the direction cosines and direction ratios Also to find the angle between planes , the length of the perpendicular and angle of bisection.	K1,K4
CO4	Find and classify the equation of lines in different forms and calculate the image of the point, image of a line and to distinguish lines and planes.The angle between the line and plane can be determined. coplanar lines can be shown and the shortest distance between	K1,K2,K5
CO5	The equations of spheres and circles of intersection can be interpreted and	K2,K4

to illustrate and analyze the tangency
or sphere.

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create
CO-PSO mapping (Course Articulation Method)

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	1	2
CO2	3	2	3	2	1
CO3	3	3	2	3	2
CO4	2	3	3	2	1
CO5	3	1	2	1	1
Total contribution of	14	11	13	9	7
Cos to PSOs					
Weighted Percentage	93.33	73.33	86.66	60	46.66
of COs contribution					
to PSOs					

Unit I:

Course Content

First order higher degree equations -Solvable for x,y,p and Clairaut's Form-Simultaneous Differential equations of the form $f_1(D)x + g_1(D)y = h_1(t)$, $f_2(D)$, $x + g_2(D)y = h_2(t)$ Unit II:

Ordinary Differential Equations-Second Order linear Differential DifferentialEquations with constant Coefficients-Find the P.I for the function of the form $e^{ax} f(x)$ and $x^n f(x)$ -Linear Equation of second order with Variable coefficients.

Unit III:

AnalytcalGeaometryof 3D -Co-Ordinate system, Direction Cosines,Direction Ratios-Equation of planes in different forms-angle between planes-Length of perpendicular-angle of bisection. **Unit IV:**

Equation of a line in different forms-image of a point-image of a line-The plane and the straight lineangle between plane and the line-Coplanar lines-Shortest distance between two lines.

Unit V:

Sphere-Tangent plane-Circle of intersection-Tangency of spheres-Orthogonal spheres.

Text Books:

- 1. Narayanan.S and T.K.ManikavachagamPillai-Differential Equations and its applications, S.Viswanathan Printers Pvt.Ltd,2006
- 2. ManickavachagamPillai.T.K.,andT.Natarajan-A Text book of Analytical Geometry-Part II-Three dimensions-S.Viswanathan (Printers & Publishers) Pvt.Ltd(2012)

Book For Reference

- 1. Kandasamy.P and K.Thilagavathi-Mathematics for B.Sc., Vol. III and VI-S.Chand and Co., New Delhi (2004)
- 2. Braun .M-Differential equations and their applications (III Edition)Springer-Verlag, Newyork (1983)
- 3. Boyce. W.E and R.C.Diprima-Elementary Differential Equations and Boundary value problems (VII Editions)-John Wiley and Sons,Inc,Newyork (2001)

Semester -II/IV

			Statistics-II	(Fo	r Mathe	emati	ics S	Stud	ents)	
Category	Course	Course	Course	L	ecture	Tu	tor	ial	Practical	Credit
	Туре	Code	Title		(L)		(T)			(C)
Part-IV	Allied		Statistics-II		90		-		-	4
Contact h	ours per sen	nester:90								
Contact h	Contact hours per week:6									
Year	Seme	ster	Internal		Externa	al		То	tal marks	
T /TT			Marks		Marks			10		
	<u>II/IV</u>	· /	25		75			100)	
Objective	: Io know th	e importan	ce of Correlat	10n	and regr	essio	n ai	nd a	lso to explain	n the basic
Course O	utcomes. Or	ution. successful	completion o	of the	e course	the	stud	lents	should be a	ale to
CONo.	Course On	itcomes		/1 UI			Kn	owl	edge Level	
CO 1	To list out	the charac	cteristics of i	ndey	x numb	oers	K1	, K2	8	
	and to find	l Laspeyer'	's and Paache	e's,	Fisher a	and		-		
	Bowley'sE	dgeworth's	index nu	umb	ers. 7	Гhe				
	method to	classify a	and analyse	the	unit to	est,				
	commodity	reversal t	test, time rev	versa	al test a	and				
	circular tests can be shown.									
<u>CO2</u>	Construct t	esting of h	vnothesis and	1 to	distingu	ish	к2	К4	K6	
02	null hypothesis and alternative hypothesis. Type I						112	, 11 1	, 110,	
	and Type I	I errors can	n be classifie	d. T	he level	of				
	significanc	e and test	of significa	ance	for la	rge				
	samples car	n be explair	ned.							
600	T 1			. 1			17.1	17.0	17.7	
CO3	Identify th	e distributi	ons such as	t-d	1stributio	ons	KI	, K3	,K5	
	and F-disti	n and differ	y making us		t t-test	the ind				
	out Varia	nce ratio	test based of	n (Chi-Sau	are				
	distribution	hee ratio	g use of this t	he g	on oqu goodness	s of				
	fit can be d	ecided.		0	,					
CO4	To find an	alysis of v	variance. One	e wa	y and t	wo	K1	,K4,	K5	
	way classi	ified data	can be exp	laine	ed and	to				
	randomize	block des	sign. Latin	squa	arescan	be				
	analysed ar	na construct	ted.							
C05	Toevolain	statistical	uality control	land	lite		KJ KJ	K3		
	advantages	Process co	ontrol can be i	i ano illusi	trated by	v	κZ	,153		
	making use	of this co	ntrol chart. ra	inge	chart. P	-				
	chart can b	e designed	,	3	, –					

Allied Paper -II

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	1	1
CO2	3	3	3	3	2
CO3	3	2	2	3	2
CO4	2	3	2	3	3
CO5	3	2	3	2	1
Total contribution of	14	12	13	12	9
COs to PSOs					
Weighted Percentage	93.33	80	86.66	80	60
of COs contribution					
to PSOs					

CO-PSO mapping (Course Articulation Method)

Course Content

UNIT-1:

Characteristics of index numbers —Laspeyer's and Paache's–Fisher's and Browley and Edgeworth's index numbers Tests–Unit Test, Commodity Reversal Test, Time Reversal Test, CircularTest. UNIT–2:

Testing of Hypothesis– Null hypothesis and Alternate hypothesis –Type I and Type II errors - Critical Region,Level of significance– Test of significance for large samples– Testing a single proportion–Difference of proportions Testing a single mean and Difference of means.

UNIT-3:

Tests based on t-distribution-Single mean and Difference of means-Tests based on F-Distribution-Variance RatioTest based on Chi-Square Distribution-Independence-Goodness of fit.

UNIT-4:

Analysis of Variance – one way and two way classified data – Basic of experimental design – Randomized Block Design–Latin Square–Simple Problems.

UNIT-5:

Statistical Quality control– Definition–Advantages,ProcessControl–Control Chart, Mean Chart, Range Chart, P-Chart, Product Control–Sampling Inspection Plans.

TextBooks:

- 1. Statistics-Arumugan&ThangapandiIssac,New Gamma Publications,2016(Unit-I,II&III).
- 2. Gupta. S.C&V.K.Kapoor–FundamentalsofMathematicalStatistics– (2002)SultanChand&Sons,NewDelhi,for(Unit-IV &V).

BooksforReference:

- 1. Vittal.P.R-MathematicalStatistics,MaragathamPublications,2004.
- 2. DCSacheti&Kapoor-Statistics,Sultan Chands New Delhi, Reprint-2017
- 3. R.S.N Pillai&Bagavathi, Statistics Theory and Practice, S Chand and Company Ltd, Reprint 2018.

ι

Semester-III Core-III SEQUENCES AND SERIES

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit		
	Туре	Code	Title	(L)	(T)		(C)		
Part-III	Core-		Sequences	90	-	-	4		
	III		And						
			Series						

Contact hours per semester:90

		1	
Contact	hours	ner week:6	

Contact nours	Ser weekto			
Year	Semester	Internal	External	Total marks
		Marks	Marks	
II	III	25	75	100

Objective: Toacquirebasicideasofclassicalanalysis and to study the behavior of sequences and series. **Course Outcomes:** On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Analyse the real number system and also to classify rational and irrational numbers.To find the upper bounds,least upper bounds and maximum elementand to elaborate triangleinequality and Cauchy-Schwartz Inequality.	K1,K2,K4
CO2	Categorize the sequences as bounded sequences, monotonic sequences, convergent sequences and divergent sequences. Also to find the algebra of limits	K1,K4
CO3	Demonstrate the behavior of monotonic sequences and to apply Cauchy's first limit theorem,Make use of Cauchy's Second limit theorem and Cesaro's Theorem. Contruct subsequence and to explain Cauchy's general principle of convergence.	K2,K3,K6
CO4	Interpret the series and to apply n th term test,Comparison test,Kummer'stest, D'Alembert's ratio test,Raabe's test, Guass test and root test to compile the nature of the series.	K2, K3,K6
CO5	Analyse the alternating series .Apply the test for convergence for series of arbitrary terms.Also to identify the power series and to determine the radius of convergence.	K1,K3,K4,K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	3	1	3	2	2
CO5	3	1	2	1	2
Total contribution of	14	10	13	12	10
COs to PSOs					
Weighted Percentage	93.33	66.67	86.67	0.8	66.67
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Inequalities, Triangle inequalities, Cauchy-Schwartz inequality, Sequences, Bounded Sequences, Monotonic Sequences. (Sec 2.1-2.3, 2.5, 3.1-3.4).

UNIT-2:

Convergent Sequences, Divergent and Oscillating Sequences, The algebra of limits, Behaviour of monotonic Sequences. (Sec 3.5-3.8)

UNIT-3:

Some theorems on limits, Subsequences, Cauchy Sequences, Series of positive terms-Infinite series, Comparison test (Sec 3.9, 3.10, 3.12, 4.1 & 4.2).

UNIT-4:

Kummer'stest,Root test and condensation test (Section 4.3,4.4)

UNIT-5:

Series of arbitrary terms, Alternating Series, Tests for convergence of series of arbitrary terms.

TextBooks:

 S. Arumugam, A.ThangapandiIssac and A.Somasundaram-" Sequences and series"– YesdeePublications, Chennai. (First reprint 2021).

Book for Reference:

- ShantiNarayan&Dr.M.D.Raishinghania,ElementsofRealanalysisS.Chand&Co.,R evisedEdition 16th (2014)
- > EllinaGrigorieva- MethodsofSolvingSequenceandseriesProblem-SpringerLink.
- Richard R.Goldberg"Methodsofrealanalysis"Oxford and IBHPublicationsCo.Pvtlimited, New Delhi ,Indian Edition 1975.
- Tom.MApostol–MathematicalAnalysis, NarosaPublishinghouse,NewDelhi. (Reprint 1985).

Semester -III Skill Based Core- Paper I VECTOR CALCULUS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Skill		Vector	60	-	-	4
	Based		Calculus				
	Core-I						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Π	III	25	75	100

Objective: Tolayagoodfoundationofvectordifferentiationandvectorintegration. Also Tosolveproblemsrelatedtothis.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Classify the vector point function and scalar	K2,K5
	point function. Determine the derivative of a	
	vector and derivative of product of scalar	
	and vector function.	
CO2	Find divergence, curl. Make use of the	K1,K3
	Laplacian operator.	
CO3	Interpret the integration of point function	K5,K6
	and to illustrate line integral. To solve	
	surface integral.	
CO4	Analyze and solve the volume integral. Also	K2, K3,K6
	to illustrate and make use of Guass	
	Divergence Theorem to solve problems.	
CO5	To solve problems based on Green's	K6
	theorem and Stoke's Theorem	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	1	3
CO2	2	2	3	2	1
CO3	3	3	3	3	2
CO4	3	1	2	2	1
CO5	1	1	2	3	3
Total contribution of	12	10	13	12	10
COs to PSOs					
Weighted Percentage	80	66.67	86.67	80	66.67
of COs contribution					
to PSOs					

UNIT-1:	
	Vector point functions, Scalar point functions – Derivative of a vector and derivative of sum of vectors – Derivative of product of a scalar and vector point function – The vector operator ∇ - Gradient
UNIT-2:	
	Divergence–Curl, solenoidal, irrotational vectors–Laplacian operator.
UNIT-3:	
	Integration of point function-Line integral-Surface integral.
UNIT-4:	
	Volume Integral–Gauss divergence theorem(StatementwithoutProof)–
	Problems.
UNIT-5:	

Green's theorem and Stoke's theorem (Statement without Proof)-Problems.

TextBook:

Duraipandian and LaxmiDuraipandian, Vector Analysis-Emerald Publishers (Revised Edition, Reprint2005).

Books for References:

- > Dr. S.Arumugamandothers–Vector Calculus, NewGammaPublishingHouse.(2006).
- Susan.J.C–VectorCalculus(4thEdition),PearsonEducation,Boston(2012).
- MurraySpiegel-Vectoranalysis SchaumPublishingcompany, NewYork (2009).
- Dr.M.K. Venkataraman and Mrs.Manorama Sridhar, Vector Calcus and Fourier Series, The National Publishing Company, Chennai-1, (2002)
- R.Gupta, VectorCalculus, FIREWAL Media (An imprint of Lakshmi Publications Pvt.Ltd)-New Edition, Copyright© 2010.

SEMESTER-III Non -Major Elective Paper I FUNDAMENTALS OF STATISTICS-I

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-III	Non		Fundamentals	30	-	-	2
	major-I		of Statistics-I				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: To introduce the new concept of Measure of Central Tendency to other major students .Also to study about correlation, regression and to solve simple problems.

-	_		
Course Outcomes :	On successful com	pletion of the course.	, the students should be able to

Course	course outcomes. On successful completion of the course, the students should be able to						
CO	Course Outcome	Knowledge Level					
No.							
CO1	Analyse the classification of datas. Also to construct bar diagram and Pie chart.	K3, K6					
CO2	Illustrate measure of central tendency and to find mean, median and mode.	K1,K2					
CO3	Explain the measure of dispersion .Also to find standard deviation, variance, quartile deviation and to obtain the relationship between them.	K4,K5					
CO4	Interpret correlation and to solve rank correlation problems.	K2,K6					
CO5	To find solution for regression equations	K1, K6					

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	3	3	3	3	3
CO4	3	2	3	3	2
CO5	1	2	2	1	2
Total contribution of	13	12	14	13	11
COs to PSOs					
Weighted Percentage	86.67	80	93.33	86.67	73.33
of COs contribution					
to PSOs					

```
UNIT-1:
```

Classification of datas-BarDiagram-Pie chart.

UNIT-2:

Measures of central tendency:Mean,median,mode(with frequency).

UNIT-3:

Measures of dispersion:Range-standard deviation, Variance-Quartile deviation.

UNIT-4:

Correlation-Rank correlation(Problemsonly)

UNIT-5:

Regression equations(Problemsonly)

TextBook:

Dr. S. Arumugam, A.ThangapandiIssac- Statistics, New Gamma Publishing House, Palayamkottai. (2016)

Books for Reference:

- S.P.Gupta-ElementaryStatisticalMethods,SultanChand&Sons,(2017).
- > T.Veerarajan, FundamentalsofmathematicalStatistics, YesDeePublishing Pvt, Ltd.. (2017)
- C.B.Gupta and Vijay Gupta, An Introduction to Statistical Methods, Vikas Publishing House Pvt.Ltd.New Delhi –(1973)

Semester -IV CORE -IV ABSTRACT ALGEBRA

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core		Abstract	90	-	-	4
			Algebra				

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal	External	Total marks
		Marks	Marks	
II	IV	25	75	100

Objective: To acquire knowledge about the concept of groups,rings and fields and to study about the concept of homomorphism.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the definitions of groups and its	K2,K4
	examples. Also to determine the order of an	
	element.Illustrate about Subgroups.	
CO2	Interpret cyclic groups and to find the	K1,K3,K6
	generators of cyclic subgroups. Illustrate	
	and apply Lagrange'sTheorem,Euler's	
	Theorem and Fermat's Theorem.	
CO3	Elaborate about Normal Subgroups and	K4,K5
	group homomorphism.Illustrate	
	Isomorphism ,Automorphism .Also to	
	apply Cayley's theorem wherever required.	
CO4	Compare and classify Rings and its	K1,K6
	types.Illustrate about Integral domain and	
	Fields .To summarize about maximal and	
	minimal ideals.	
CO5	Utilize the concept of homomorphism and	K3,K5
	isomorphism on rings .Also to find kernel of	
	homomorphism and to make use of	
	fundamental theorem.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	2	1	3	1	2
CO5	2	2	2	1	2
Total contribution of	12	11	13	10	12
COs to PSOs					
Weighted Percentage	80	73.33	86.67	66.67	80
of COs contribution					
to PSOs					

UNIT-1:Groups – definition and examples-Elementary properties of groups – subgroup – order of an element– centre of a group –Normaliserand Centralizer – Product of two Subgroups – order of HK – Intersection and unionofsubgroups

UNIT-2 Cyclic groups–generators of a cyclic group–Cosets and Lagrange's theorem– Euler'stheorem– Fermat'stheorem.

UNIT-3:Normal Subgroups-Quotient groups – Group Homomorphism – Canonical homomorphism – Kernel of a homomorphism–Isomorphism–Automorphism–Inner automorphism–Permutation groups–Cayley's theorem.

UNIT-4:Rings:Definition and examples – Types of rings – Elementary properties of a ring – Integral domain – Field – Subrings – Subfields – Ideals – Principal ideal – Quotient ring – Maximal and prime ideals.

UNIT-5:Homomorphism of rings – Isomorphism – Kernel of a homomorphism – Fundamental theorem.

TextBook:

1. S.Arumugam and A.ThangapandiIssac "Modern Algebra" - Scitech Publications, Privatelimited.(2008)

Books for Reference:

- 1. M. L.Santiago, ModernAlgebra–McGraw-HillEducationIndiaPvt. Limited, (2002).
- 2. T K. ManickaVachagampillai and others Modern Algebra VisvanathanPublishers(2011).
- 3. VisvanathanNayak,Modern Algebra-EmeraldPublishers,Reprint1992.

SEMESTER -IV Skill Based Core-Paper- II TRIGONOMETRY,LAPLACE TRANSFORMS AND FOURIER SERIES

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-III	Skill		Trigonometry,	60	-	-	4
	Based		Laplace				
	Core		Transforms and				
			Fourier Series				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To understand the concept of Trigonometry and to acquire knowledge about Laplace Transform and its inverse. Also to study the concept of Fourier series and to solve problems by making use of it. **Course Outcomes:** On successful completion of the course, the students should be able to

	, ,,,,,,, .	
CO	Course Outcome	Knowledge Level
No.		
CO1	Summarize about Trigonometry and to	K2,K3
	illustrate about the expansion of sinnx,	
	$\cos nx$, $\sin^n x$, $\cos^n x$	
CO2	Obtain the relationship between hyperbolic	K1,K4
	functions and circular function. Explain	
	about inverse hyperbolic functions. To find	
	summation of the series using C+iS method.	
CO3	Illustrate laplace transform	K5
CO4		K6
	Solve differential equations with constant	
	coefficientsby making use of Laplace	
	Transforms.	
CO5	Solve problems based on Fourier series .	K3,K6
	Identify the odd and even functions and to	
	deduce half range series.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
C01	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	3	1	2
CO5	3	3	1	1	1
Total contribution of	14	13	12	10	11
COs to PSOs					
Weighted Percentage	93.33	86.67	80	66.67	73.33
of COs contribution					
to PSOs					

UNIT-1:

Trigonometry: Expansion of sinnx, cosnx, tannx and expansions of sinⁿx and cosⁿx.

UNIT-2:

Hyperbolic functions – Relation between hyperbolic functions and circular functions – Inverse hyperbolic functions – Logarithm of a complex number–Summation of series using C+iS method

UNIT-3:

Laplace transforms.

UNIT-4:

Inverse transforms, Solving linear differential equations with constant coefficients using Laplace Transforms.

UNIT-5:

Fourier Series–Definition, Finding Fourier coefficients for a given periodic function with period 2π and 21,odd and even functions ,Half range series.

TextBook:

- 1. Arumugam. SandThangapandiIssac.A-TrigonometryandFourier Series.
- $2. \ T.K. \ Manickava chag am Pillai and S. \ Narayanan Differential equations and its applications,$
- S. Viswanathan Publishers 2011.

Books for reference:

- 1. T.Veerarajan-Algebraand Trigonometry- YESDEEPublishing pvt.Ltd., Chennai. (2020).
- 2. RayHanna.J–FourierSeries, TransformsandBoundaryvalueProblems, Dover PublicationsNewYork,2008.
- 3. Dr.M.K.Venkataraman and Mrs.ManoramaSridhar,Vector Calculus and Fourier Series, The National Publishers Company,Chennai (2002).

SEMESTER -IV Non-Major Elective -II FUNDAMENTALS OF STATISTICS-II

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Туре	Code		(L)	(T)		(C)
Part-IV	Non		Fundamentalsof	30	-	-	4
	Major		Statistics-II				

Contact hours per semester:30

Contact nours per week.2	Contact	hours	per	week:2
--------------------------	---------	-------	-----	--------

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To know the concept of attributes and to study the index numbers and simple problems. **Course Outcomes**: On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Explain the theory of Attributes	K3
CO2	Illustrate about index numbers and to	K1,K5
	determine the weighted index numbers.	
CO3	Analyse and predict consumer price index	K6
	numbers	
CO4	Evaluate Time series	K4
CO5		K2
	Apply curve fitting for straight line ,parabola	
	and exponential curve	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	1	2	3
CO5	2	3	1	3	3
Total contribution of	12	13	11	13	14
COs to PSOs					
Weighted Percentage	80	86.67	73.33	86.67	93.33
of COs contribution					
to PSOs					

UNIT-I	
	Attiributes-Two Attributes
UNIT –II	Index number –weighted index number.
UNIT – III	Consumer Price index number –conversion of index number.Time
UNIT –IV	series -measurement of trends.
UNIT-V	Curve fitting–Straight line –Parabola –Exponential curve.

TextBook:

1. Dr. S. Arumugam, A.ThangapandiIssac- Statistics, New GammaPublishing House, Palayamkottai (2016).

Books for Reference:

- 1. S.P.Gupta-Elementary Statistical Methods, Sultan Chand & Sons, 2017).
- 2. T. Veerarajan Fundamentals of mathematical Statistics, YesDee Publishing Pvt.Ltd.Edition .(2017)

Semester-V Core-V LINEAR ALGEBRA

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Core-V		Linear Algebra	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective:To acquire knowledge about vectors spaces,Inner product space and linear transformations.Also to solve problems in Matrices

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain the definitions and general	K1, K2
	properties of vector spaces. Also to explain	
	subspace. They know where to apply	
	fundamental theorem of homomorphism.	
CO2	Determine the span of a set and to check	K4
	whether the given set is Linearly dependent	
	or not. Also to find basis and dimensions.	
CO3	Illustrate and apply Rank Nullity	K3,K6
	theorem.Explain the definitions and	
	examples of inner product space. Apply	
	Gram Schmidt Orthogonalization process.	
CO4	Construct matrices and also to summarize	K2, K6
	the elementary transformations.Determine	
	the Inverse of matrix and rank of a matrix.	
	To make use of Cayley Hamilton Theorem.	
CO5	Determine Eigen Values and Eigen Vectors.	K4,K5
	Identify bilinear forms and quadratic	
	forms.Also To deduce Diagonal form from	
	Quadratic form.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	2	1	3	2	2
CO5	2	2	2	1	3

Total contribution of COs to PSOs	12	11	13	12	11
Weighted Percentage of COs contribution to PSOs	80	73.33	86.67	0.8	73.33
e. e.					

UNIT-1:

Vector spaces:Definition and examples-Elementary properties-subspaces- linear transformations-Fundamental theorem of homomorphism.

UNIT-2:

Span of a set-linear dependence and independence-basis and dimension.

UNIT-3:

Rank - Nullity theorem – Matrix of a linear transformation – Inner product space – Definition and examples–orthogonality–orthogonal complement– GramSchmidt orthogonalization process.

UNIT-4:

Matrices –Elementary transformation–Inverse and power of a matrix using Cayley Hamilton's theorem– Inverse and rank of a matrix using elementary transformations.

UNIT-5:

Eigen values and Eigen vectors – Properties and problems – Bilinear forms –Quadratic forms –Reduction of quadratic form to diagonal form.

TextBook:

S.Arumugan&ThangapandiIssac ,Modern Algebra-Scitech Publication,Reprint(2008).

BooksforReference:

- 1. SharmaJ.NandVashisthaA. R.LinearAlgebra-KrishnaPrakashNandir1981.
- 2. JohnB. Fraleish–AfirstCourseinAbstractAlgebra 7thedition, Pearson, 2002.
- 3. N. Ramabhadran&R.Balakrishnan,Textbookofalgebra VikasPublishingCo.RevisedEdition1985.
- 4. Ward Cheney and David Kincaid, Linear Algebra-Theory and Applications. Jones and Barlett India PVT Ltd, New Delhi -First Edition(2010)

Semester-V Core-VI REAL ANALYSIS

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credits (C)
Part-III	Core- VI		Real Analysis	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about the real number system and metric spaces. Also to study the concepts of connectedness and compactness.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain about Metric spaces and to	K1,K3
	construct an open ball .Also to interpret	
	interior	
CO2	Interpret about closed sets and to find	K2,K4
	closure. To determine limit points. Analyze	
	about complete metric space.Discuss about	
	Cantor's intersection theorem and Baire's	
	Category theorem.	
CO3	Summarize continuity. Illustrate about	K3,K5
	uniform continuity.	
CO4	Explain about connectedness and to deduce	K4,K6
	the connected subsets of R .To obtain the	
	relationship between connectedness and	
	continuity	
CO5	Illustrate about compactness and to find the	K3,K6
	connected subsets of R.Illustrate and make	
	use of Heine Borel Theorem .To determine	
	the relationship between compactness and	
	continuity.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	1	2	3	2	2
CO5	1	2	2	3	3
Total contribution of	10	12	13	14	11 _{Pag}

COs to PSOs					
Weighted Percentage	66.67	80	86.67	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Metricspaces - Examples - boundedsets - openball-opensets - subspaces - interiorofaset.

UNIT-2:

Closedsets-closure-limitpoints-denseset-completemetricspace-Cantor's intersection theorem- Baire's category theorem.

UNIT-3:

Continuity-Homeomorphism-UniformContinuity

UNIT-4:

Connectedness–Connected subsets of R–Connectedness and continuity–Contraction mapping theorem.

UNIT-5:

Compactness–Compact metric spaces–Compact subsets of **R**–Heine Borel theorem–Equivalent characterizations for compactness–Compactness and Continuity.

TextBook:

Dr. S. Arumugan, Modern Analysis-Yes DeePublishingPvt.Ltd.Reprint(2019).

Books for Reference:

- 1. RichardR.Goldberg–MethodsofRealAnalysis-OxfordandIBHPublishingCo.NewDelhi,Indian edition 1985.
- 2. RVisvanathanNayak,RealAnalysis-EmeraldPublishers, Reprint1992.
- 3. Dr.B.S.Vatsa,Introductionto Real Analysis,CBS Publishers and Distributors,New Delhi.

Semester-V Core-VII STATICS

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credits (C)
Part-III	Core- IX		Statics	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To provide the basic knowledge of equilibrium of a particle and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the forces acting at a point and to	K2,K4
	apply the parallelogram law of forces,	
	Triangle law of forces and Lami's theorem.	
CO2	Interpret parallel forces and moments.	K1,K6
	Analyse the resultant of two parallel forces	
	and the resultant of two unlike unequal	
	parallel forces.To applyVarigon's theorem.	
CO3	Summarize equilibrium of three forces acting	K3,K5
	on a rigid body and to illustrate three	
	coplanar forces theorem and to make use of	
	the above theorem to solve problems	
CO4	Explain about laws of friction.Also to	K1,K2,K6
	determine the angle of friction and Illustrate	
	about the equilibrium of a particle and to	
	make use of the concepts to solve the	
	problems.	
CO5	Interpret the equilibrium of strings. To deduce	K2,K4
	the equation of catenary and its geometrical	
	properties.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

ee 150 mapping (evalue in dediadon interiou)								
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5			
Cos								
CO1	3	3	3	3	3			

CO2	3	2	3	3	1
CO3	3	3	2	3	3
CO4	1	2	3	2	3
CO5	1	2	1	3	3
Total contribution of	11	12	12	14	13
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	93.33	86.67

Course Content UNIT-1:

Forces acting at a point-Parallelogram law of forces-Triangle law of forces-Lami's theorem

UNIT-2:

Parallel forces and moments-resultant of two parallel forces resultant of two unlike unequal parallel forces-Varigon'stheorem

UNIT-3:

Equilibrium of three forces acting on a rigid body-three coplanar forces theorem.

UNIT-4:

Friction–Laws of friction–angle of friction– equilibrium of a particle (i)on a rough inclined plane (ii)under a force parallel to the plane(iii)under any force

UNIT-5:

Equilibrium of strings-equation of the common catenary-tension at any point-geometrical properties of common catenary

TextBook:

M.K. Venkatraman-Statics, Agasthiar Publications, Trichy(2020).

Booksforreference:

- 1. S.Narayanan, StaticsS.ChandandCompany, NewDelhi (1985).
- 2. K.ViswanathaNaikandM.Kari,Statics ,EmeraldPublishers,Chennai.
- 3. I.Rajeswari-Mechanics-SarasPublication, Nagercoil (2016).

Semester-V Core-VIII INTEGRAL TRANSFORMS AND Z TRANSFORMS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Integral	75	-	-	4
	VIII		Transforms				
			and Z				
			transforms				

Contact hours per semester:75

Contact hours	per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To develop the knowledge of transforms and to solve problems in Fourier transforms and Z transforms.

Course Outcomes: On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Apply Fourier transforms and to explain the properties.	K2,K4
CO2	Solve problems on infinite Fourier cosine and Sine Transforms	K1,K6
CO3	Identify and solve Finite Fourier transfoms	K3,K5
CO4	Illustrate Z transforms and its properties.	K1,K2,K6
CO5	Utilize inverse Z transforms to solve difference equations.	K2,K4

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	1	3	2	2	3
CO4	2	2	3	1	3
CO5	2	3	2	2	3
Total contribution of	11	13	13	12	13
COs to PSOs					
Weighted Percentage	73.33	86.67	86.67	80	86.67
of COs contribution					
to PSOs					

UNIT-1:

Fourier Transforms-Properties of Fourier Transforms.

UNIT-2:

Infinite Fourier Cosine and Sine Transforms-Properties.

UNIT-3:

Finite Fourier Transforms.

UNIT-4:

Z-transforms-Properties.

UNIT-5:

Inverse Transforms- Introduction to difference equations and find solution using inverse Z transforms

TextBook:

Singaravelu.A-Eingineering mathematics (volumeIII) -MeenakshiAgency, Chennai (2019).

Books for Reference:

- 1. MuthuKumaraswamy.R- Transforms and Partial Differential Equation Equations–YesDee Publications–Second Edition(2019).
- 2. Gangatharan, Engineering Mathematics (volume I) Prentice Hall of India Pvt.Ltd.(2007).
- 3. <u>Dr.C.Muthulakshmi@Saisikala</u> and R.Ponraj- Transforms and their applications, Charulatha Publication(2020).

Semester-V Major Elective-I DISCRETE MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Non		Discrete	60	-	-	4
	Major -		Mathematics				
	Ι						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To study concepts of mathematical logics and to understand the basics of Lattices and Boolean Algebra.

Course Outcomes: On successful completion of the course, the students should be able to

СО	Course Outcome	Knowledge Level
No.		
CO1	Illustrate and use the statements, notations	K2,K3
	and connectives .Construct truth table and	
	utilize conditional and biconditional	
	statements.	
CO2	Analyze and explain Predicate calculus	K1,K4
CO3	Elaborate Groups and monoids. Also to	K6
	develop Group codes	
CO4	Construct Lattices and special	K5
	lattices. Analyze and explain Boolean algebra	
CO5	Convert From one form to another form	K2,K6
	(Decimal,Binary,Octal,Hexadecimal).	
	Evaluate Binary addition, subtraction	
	multiplication and division.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	3	1	3
CO2	3	3	3	3	2
CO3	3	3	2	1	3
CO4	2	3	3	3	3

CO5	1	3	2	3	2
Total contribution of	12	14	13	11	13
COs to PSOs					
Weighted Percentage	80	93.33	86.67	73.33	86.67
of COs contribution					
to PSOs					

UNIT-1: Mathematical logic – Statements and notation, Connectives, Negation, Conjunction, Disjunction, Statement formula and truth table ,Conditional and biconditional statements.Well defined formulae, tautologies. **UNIT-2**: Normal forms - The theory of interference for the statement calculus,The Predicate,Theory of inference for the Predicate Calculus.

UNIT-3: Algebraic structures - Groups and monoids, Simple properties, Group codes.

UNIT-4: Lattices and Boolean algebra -Lattices asposets, Properties of lattices, special lattices, Boolean algebra, Gating networks, Minimal sums of products.

UNIT-5: Number system and codes - Decimal, Binary, Octal, Hexadecimal–Conversion from one to another– Binary addition, subtraction, multiplication and division, BCD, Weighted excess time, Graycode.

TextBook:

J.P.Tremblayand Manohar-Discretemathematicalstructures with application to Computer Science(Tata McGrawHill)NewDelhi, 43rd edition 2013.

BooksforReference:

- 1. M. K. Venkataramanandothers Discretemathematics- TheNationalPublishingPvt.Ltd. (2000).
- 2. G. Balaji–Discretemathematics–BalajiPublishersChennai(2013).
- 3. T. Veerarajan–Discrete mathematics Tata McGraw Hill –2009.
- 4. GarettBirkhoff-Lattice Theory, American Mathematical Soceity(1948).
- 5. M.K.Sen,B.C.Chakraborty,Introduction to Discrete Mathematics, Books and Allied (P) Ltd (2009).

Semester-V Major Elective-I OPERATIONS RESEARCH -I

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Major		Operations	60	-	-	4
	elective		Research-I				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To introduce the various techniques of operations research

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Solve Linear Programming Problem by making use of Graphical method, Simplex method.	K4
CO2	Interpret the concept of duality.Classify primal and dual problems.Utilizing the concept of duality ,solve problems on dual simplex method.	К3
CO3	Solve Transportation problems by making use of North – west corner rule,Matrix- Minima method,Vogel's Approximation rule. Evaluate Degeneracy and unbalanced transportation problems.	K2,K5
CO4	Determine the solution for Assignment problems.	K1,K6
CO5	Solve sequencing problems.	K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	1	3
CO2	2	1	2	3	3
CO3	2	1	2	3	2
CO4	2	3	1	3	3
CO5	3	3	2	3	3
Total contribution of	12	11	10	13	14
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	66.67	86.67	93.33

UNIT-1:

Linear Programming Problem:Mathematical formulation of LPP–Graphical method,Simplex method–Artificial variable technique.

UNIT-2:

Concept of Duality-Primal and Dual problems-Duality-Dual Simplex method.

UNIT-3:

Transportation Problem:North-west Corner rule–Matrix-Minima method–Vogel's approximation method– MODI method–Degeneracy and unbalanced Transportation problem.

UNIT-4:

Assignment Problem: Hungarian method – Unbalanced assignment problems.

UNIT-5:

Sequencing Problem: n jobs and two machines – n jobs and three machines – 2 jobs and m machines.

TextBook:

 KantiSwarup, P. K. Gupta and Manmohan – Operations Research – Sultan Chand and sons,(New Delhi)12thedition(2006)

BooksforReference:

- 1. GuptaP.KandD.S.Hira–OperationsResearch–S.Chand&Sons Reprint (2012).
- 2. B. J.RanganathandA. S.Srikantappa–OperationsResearch– YesDeePublishingHouse,Chennai(2017).
- 3. HamdyA.Taha Operationsresearch, Anintroduction- 8th EditionPrentice–HallIndia(2006).
- 4. A.C.S.Kumar, Operation Research, Yes Dee Publications, Chennai, 3rd Reprint 2019.

Semester-VI Core-IX COMPLEX ANALYSIS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Complex	75	-	-	4
	IX		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To understand the concepts of complex variables and to learn about elementary transformations in complex variables.

Course Outcomes: On successful completion of the course, the students should be able to

		•
CO	Course Outcome	Knowledge Level
No.		
CO1	Explain analytic functions and determine the	K2, K3
	functions of a complex variables and to	
	utilize Cauchy Reimann equations	
CO2	Elaborate Bilinear Transformations and	K4,K5
	classify the elementary transformations.	
	Also to find fixed points.	
CO3	Illustrate complex integrations and to make	K1,K6
	use of Cauchy's Integral Formula	
CO4	Explain Series Expansions and to determine	K2, K6
	Taylor's Series, Laurent's Series. Determine	
	zeros of an analytic function.	
CO5	Determine residues and to make use of	K4,K5
	Cauchy's Residue Theorem. Also to evaluate	
	definite integrals	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	2	3	1
CO3	3	3	3	3	2
CO4	1	2	2	2	2
CO5	1	2	1	1	3
Total contribution of	10	12	11	12	11
COs to PSOs					
Weighted Percentage	66.67	80	73.33	80	73.33
of COs contribution					
to PSOs					

UNIT-1: Analytic functions - Functions of a complex variable, Limits, theorems on limit, continuous function, Differentiability, The Cauchy-Riemann equations, Analytic functions, Harmonic functions.

UNIT-2:Bilinear Transformations – Elementary Transformations, Cross Ratio, Fixed Points of Bilinear Transformations, Some Special Bilinear Transformations.

UNIT-3:Complex Integration – Definite Integral, Cauchy's Theorem, Cauchy's Integral Formula, Higher Derivatives.

UNIT-4:Series Expansions – Taylor's Series, Laurent's Series, Zeros of an Analytic Function, Singularities.

UNIT-5: Calculus of Residues– Residues, Cauchy's Residue Theorem, Evaluation of Definite Integrals.

TextBook:

Arumugam.SandT.Issac-"ComplexAnalysis"-ScitechPublishingHouse-Chennai, (2002).

Books for Reference:

- 1. Churchill.R.V.andJ.W.Brown-"Complex variables and Applications"-McGrawHillInternationalEditions-IXEdition,2013.
- 2. Ponnuswamy.S "Foundations of Complex Analysis", Narosa Publication House, NewDelhi, IIEdition2005.
- 3. Duraipandian.P andLakshmiDuraipandian-"ComplexAnalysis"-EmeraldPublications, Chennai(2001).

Semester-VI Core-X GRAPH THEORY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-X		Graph	75	0	-	4
			Theory				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce the notion of graph theory and its applications and to learn the techniques in Graph Theory.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Construct graph and to explain its definition.	K2,K3
	Determine degrees. Also to perform	
	operations on graph	
CO2	Classify degree sequence and graphic	K4,K5
	sequence. Illustrate connectedness,	
	compactness and connectivity.	
CO3	Construct Eulerian Graphs and Hamiltonian	K1,K6
	graphs.Elaborate the characterizations of	
	trees and to find centre of a tree.	
CO4	Interpret Planar graphs and to determine	K2, K6
	chromatic numbers and chromatic index.	
CO5	Explain Chromatic Polynomials and the	K4
	properties of digraphs.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2
CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
Cos to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Definition and examples of graphs –degrees- subgraphs–isomorphism–independent sets and coverings–matrices–operations of graphs.

UNIT-2:

Degree sequences-graphic sequences- walks-trails and paths -connectedness and components-connectivity.

UNIT-3:

Eulerian graphs-Hamiltonian graphs, Trees and its characterization-centre of a tree.

UNIT-4:

Planar graphs-Definition and properties-chromatic number and chromatic index.

UNIT-5:

Chromatic polynomials, definition and basic properties of digraphs, paths and connectedness in digraphs.

TextBook:

Arumugam.S&S.Ramachandran–InvitationtoGraphTheory, ScitechPublications,Chennai,2002.

Booksforreference:

- 1. Kumaravelu.SandSusheelaKumaravelu-Graphtheory-Nagercoil,2002.
- 2. NarasinghDeo–Graphtheorywithapplicationtoengineeringandcomputer science, Prentice–HallofIndiapvt.Ltd.,NewDelhi,1979.

Semester-VI Core-XI NUMBER THEORY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Number	60	-	-	4
	XI		Theory				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To highlight the beauties in the world of numbers and to prepare the students for coding through congruence.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		0
CO1	Explain Peano's theorem and to utilize	K1,K5
	mathematical induction. Also to make use of	
	binomial theorem	
CO2	Illustrate Division Algorithm .Determine GCD .To	K3,K5
	deduce the Diaphantine equation ax+by=c	
CO3	Intrepret the fundamental theorem of	K2,K6
	arithmetic.Explain The Sieve of Eratosthenes and to	
	use Goldbach Conjecture.	
CO4	Summarize the basic properties of congruences and	K2, K4
	to apply Chinese Remainder Theorem	
CO5	Elaborate Fermat's Theorem, Wilson's Theorem	K6
	and to apply Kraitchik Factorization Method.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
C01	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2
CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
COs to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Peano's Axioms-Mathematical induction-The Binomial Theorem-Early Number Theory.

UNIT-2:

Division Algorithm–GCD–Euclidean Algorithm–The Diaphantine Equation ax+by=c.

UNIT-3:

The fundamental Theorem of Arithmetic – The Sieve of Eratosthenes– The Goldbach conjecture.

UNIT-4:

Basic properties of congruences-Linear congruence and The Chinese Remainder Theorem.

UNIT-5:

Fermat's Theorem–Wilson's Theorem–The Fermat–Kraitchik Factorization Method.

TextBook:

David.M.Burton –ElementaryNumberTheory-Tata McGraw Hill Education Pvt. Ltd-(SixthEdition)-2007.

TheoryofNumbers,

BooksforReference:

1. IvanNivenand.H,Zuckerman-AnIntroductionto CambridgeUniversityPress-2019.

2. Kumaravelu.S, andSusheelaKumaravelu-ElementsofNumber TheoryNagercoil,2002.

Semester-VI Core-XII DYNAMICS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Туре	Code	Title	(L)	(T)		(C)
Part-III	Core-		Dynamics	60	-	-	4
	XII		-				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To provide a basic knowledge of the behaviour of objects in motion and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
CO	Course Outcome	Knowledge Level
No.		
CO1	Illustrate projectiles and to find the equation of	K2,K3
	path, range and maximum height and time of flight.	
CO2	Elaborate about the collision of elastic	K1,K4
	bodies.Interpret law of impact and classify direct	
	and oblique impact.	
CO3	Determine simple harmonic motion in a straight	K2,K6
	line.Summarize the composition of SHM of the	
	same period in the same line and along two	
	perpendicular directions	
CO4	Interpret motion under the action of central	K5,K6
	forces.Derive velocity and acceleration in polar	
	coordinates.	
CO5	Obtain the differential equation of central orbit	K3,K6
	.Also to deduce the pedal equation of central orbit.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	2
CO3	3	3	2	3	2
CO4	2	2	3	1	2
CO5	2	2	2	1	3
Total contribution of	12	12	13	11	12
COs to PSOs					
Weighted Percentage	80	80	93.33	73.33	80
of COs contribution					
to PSOs					

UNIT-1:

Projectiles-Equation of path-range-maximum height-time offlight.

UNIT-2:

Collision of elastic bodies-Laws of impact-direct and oblique impact.

UINT-3:

Simple Harmonic Motion (SHM) in a straight line-Geometrical representation–composition of SHM of the same period in the same line and along two perpendicular directions.

UNIT-4:

Motion under the action of central forces-velocity and acceleration in polar co-ordinates.

UNIT-5:

Differential Equation of central orbit-pedal equation of central orbit-problems to find the law of force towards the pole when the orbit is given.

TextBook:

Venkatraman, M.K.-A TextBook on Dynamics, Agasthiar Publication, Trichy, 2020.

Books for Reference:

- 1. Narayanan, S-Dynamics, S.Chand& company(New Delhi), 16thEdition, 1986.
- 2. Duraipandian.P, LaxmiDuraipandian and MuthamizhJayapragasam-Mechanics S.Chand& Company (2003).
- 3. I.Rajeswari–Dynamics Saras Publication, Nagercoil, I edition (2019).

Semester-VI Core-XIII NUMERICAL METHODS

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credits (C)
Part-III	Core- XIII		Complex Analysis	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce finite differences and to solve numerical problems by different methods. **Course Outcomes**: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Obtain solution for numerical algebraic and	K1,K3,K4
	Transcendental equations by making use of	
	various methods.	
CO2	Find finite difference for first and higher	K2,K6
	order differences. To classify forward and	
	backward differences.	
CO3	To apply interpolation formula in Newton's	K5,K6
	Forward and backward, Guass Forward and	
	backward formula.	
CO4	Make use of numerical differentiation and	K3,K4
	integration in Newton's forward &backward	
	differences for differentiation. Also to utilize	
	Trapezoidal rule and Simpson's 1/3 and 3/8	
	rule.	
CO5	Solve Difference equations and to determine	K1,K6
	the order and degree of difference	
	equation.Solve linear difference equation and	
	find complementary function and to deduce	
	particular Integral of the function.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	3	3
CO2	2	2	3	3	1
CO3	2	3	2	3	2
CO4	2	2	2	3	2
CO5	1	2	2	2	3
Total contribution of	9	12	12	14	11
COs to PSOs					
Weighted Percentage of	73.33	80	80	93.33	73.33
COs contribution to PSOs					

Course Content

UNIT-1:

Solution of Numerical algebraic and Transcendental Equations : Bisection method-Newton's method. Criterion of order of convergence of Newton's method. Regula False method -Gausselimination-Gauss Jacobi-GaussSeidalmethod.

UNIT-2:

Finite Difference: First and higher order differences - Forward and backward differences -

PropertiesofOperator – Differencesofa polynomial–FactorialPolynomial.

UNIT-3:

Interpolation: Newton's Forward-backward, Gauss forward-backward interpolation formula-Bessel's formula. Divided differences – Newton's divided differenceformula – Lagrange'sinterpolationformula.

UNIT -4:

Numerical Differentiation and integration : Newton's forward and backward differences for

differentiation- Derivatives using Bessel's formula-Trapezoidal rule-Simpson's 1/3 rule & 3/8 rule. UNIT-5:

Difference equations: Definitions-order and degree of difference equation-Linear difference equationfinding complementary function-particular integral-simple applications.

TextBook:

Venkatraman.M.K-Numerical methods in Science and Engineering National Publishing Company-Edition1998.

BooksforReference:

- 1. Kandasamy.P.K.Thilagavathy and K.Gunavathy, Numerical Methods, S.Chand& CompanyLtd.Edn.2006.
- 2. AutarKawandEgwwnEncKalu- $Numerical methods with Application Abidet. Autokaw. com 2^{nd} Edition, 2011.$
- 3. Dr.A.Singaravelu, Statistics&NumericalMethods, MeenakshiAgency(2012).

Semester-VI Major Elective- III FUZZY MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Туре	Code		(L)	(T)		(C)
Part-III	Major		Fuzzy	60	-	-	4
	Elective		Mathematics				
	-III						

Contact hours per semester:60

Contact hours per week :4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: Tointroduce fuzzyconceptstostudents and

tofacilitatethestudentstostudyfuzzyoperationsandfuzzynumbers

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain Crisp sets and fuzzy sets and illustrate the	K1,K2
	characteristics and significance of Paradigm Shift.	
CO2	Elaborate the Additional properties of α cuts and	K1,K4
	the extension principle for fuzzy sets.	
CO3	Perform fuzzy set operations. Also to determine	K5,K6
	fuzzy complements, fuzzy intersections and fuzzy	
	unions.	
CO4	Determine fuzzy numbers and Linguistic	K2,K3,K4
	variables. Apply arithmetic operations on intervals	
	and on fuzzy numbers.Construct lattice of fuzzy	
	numbers.	
CO5	Analyze and classify fuzzy decision making	K5,K6
	, individual decision making, Multi person decision	
	making problems.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	1	3	3	1
CO3	2	1	2	3	2
CO4	1	2	2	3	2
CO5	2	2	1	2	3
Total contribution of	9	9	11	14	11
COs to PSOs					
Weighted Percentage	60	60	73.33	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Crisp Sets–Fuzzy Sets–Basic Types–Basic Concepts–Characteristics and Significance of Paradigm Shift. UNIT-2:

Additional properties of α -cuts- representations of fuzzy sets- Extension principle for fuzzy sets. **UNIT-3:**

Fuzzy set operations–Fuzzy complements–Fuzzy intersections:t-norms–Fuzzy Unions: t-conforms – Combinations of operations.

UNIT-4:

Fuzzy numbers – linguistic variables-arithmetic operations on intervals-arithmetic operations on fuzzy numbers-Lattice of fuzzy numbers-Fuzzy Equations.

UNIT-5:

Fuzzy decision making - Individual Decision Making-Multi-person decision making-fuzzy linear programming.

TextBook:

GeorgeJ.Klir and BoBoYuan–Fuzzy sets and Fuzzy Logic Theory Applications, Prentice Hall of India,2002,New Delhi.

Book forReference:

GeorgeJ.KlirandTina.A.Folger–Fuzzy sets, uncertainty and Information – Prentice Hall ofIndia,2003,NewDelhi.

Semester-VI Major Elective- IV OPERATIONS RESEARCH-II

Contact hours per semester:60 Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce games and strategies. Also to understand networking problems. **Course Outcomes**: On successful completion of the course, the students should be able to

	Category		Course Type	Course Code	Course Title	Lecture	Tutorial (T)	Practical	Credits (C)
	Part-	-III Major Operations 60 Elective Research -III		-	-	4			
C N	0 0.	Cou	rse Outcon	ne		Knowledg	e Level		
C	201	Inter perso strate	pret the ga ons zero su egies and do	ames and s m games.M ominance p	ve two xed	K2,K3			
C	202	Anal with takin the r sudd	yze the re time. Illus ng money va eplacement enly and St	placement trate replac alue into co of items th affing prob	deteriorate a machine d elaborate fail	K1,K5			
C	203	Expl (M/N	ain the que M/1:FCFS),	ueing mode (M/M/1:∞/	K4,K6				
C	2 0 4	Compose network scheduling using PERT/CPM. Explain the rules of network construction.Make use of PERT calculation.					K2,K3		
С	205	Anal	lyse and sol	ve inventor	ry control prob	lems.	K5,K6		

4. K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create **CO-PSO mapping (Course Articulation Method)**

PSOs PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	2	3
CO2	2	1	3	2	1
CO3	2	1	2	2	2
CO4	2	2	2	2	1
CO5	1	2	1	1	3
Total contribution of	9	9	11	9	10
COs to PSOs					
Weighted Percentage	60	60	73.33	60	66.67
of COs contribution					
to PSOs					

UNIT-1:	Games and Strategies: Two Person Zero sum Games – The Maximin – Minimax Principle –Games without Saddle Points – Mixed Strategies – Graphical Solution of 2xn and mx2 games–Dominance Property.
UNIT–2:	Replacement of items that deteriorate with time – replace montage of a machine taking moneyvalue into consideration – replacement of items that completely fail suddenly and StaffingProblems.
UNIT-3:	$Queue ingmodels: General concept and definitions-characteristics-properties of Poisson process Models (M/M/1:/FCFS), (M/M/1:\infty/FCFS), (M/M/S:/FCFS).$
UNIT-4:	Networks Scheduling by PERT/CPM: Network and basic components– Rules of Network Construction– Time Calculation in network–Critical Path Method– PERT Calculation.
UNIT-V:	Inventory Control :Introduction–Types of Inventories–Inventory decisions–Deterministic inventory Problem–EOQ problems without shortages.
TextBook:	
KantiSwa 2006,12 ^{tl}	arup,P.K.GuptaandManmohan–OperationsResearch–SultanChand&Sons– ^h Edition.

Books for Reference:

- 1. Gupta.P.KandD.S.Hira–OperationsResearch–S.Chand&sons–VIIEdition..
- 2. B.J.RanganathandA.S.Srikantappa–OperationsResearch,YesDeePublishingHouse,Chennai(2017).
- 3. Hillier, F.S. and G.J. Lieberman– Introduction to Operations Research, 9th Ed., TataMcGrawHill, Singapore, 2009.
- 4. HamdyA.Taha,-OperationsResearch,AnIntroduction,8thEd.,Prentice-HallIndia,2006.
- 5. Hadley.G.-LinearProgramming,NarosaPublishingHouse,NewDelhi,2002.